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Recall: The Random Network Model
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Three realizations of a random network generated with the same parameters 
p=1/6 and N=12.

A random network consists of N nodes where each node pair is 
connected with probability p
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Aka “Erdős-Rényi network” – from random graph theory (1959–1968)
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Three realizations of a random network with p=0.03 and N=100. Several nodes 
have degree k=0, shown as isolated nodes at the bottom.

A random network consists of N nodes where each node pair is 
connected with probability p
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The Degree Distribution of Random Networks
In a given realization of a random network some nodes gain many links, while 
others acquire only a few or no links. 

These differences are captured by the degree distribution, pk, which is the 
probability that a randomly chosen node has degree k.
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● The probability that k of its links are present, or pk.
● The probability that the remaining (N-1-k) links are missing, or (1-p)N-1-k.
● The number of ways we can select k links from N- 1 potential links a node can 

have, or 

Consequently the degree distribution of a random network follows the binomial 
distribution

In a random network the probability that node i has exactly 
k links is the product of three terms
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Aside: The Binomial Distribution
If we toss a fair coin N times, tails and heads occur with probability p = 1/2. 

The binomial distribution provides the probability px that we obtain exactly x 
heads in a sequence of N throws. 

In general, the binomial distribution describes the number of successes in N 
independent experiments with two possible outcomes, in which the probability 
of one outcome is p, and of the other is 1-p.
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Aside: The Binomial Distribution - Useful Properties
The mean of the distribution (first moment) is

Its second moment is

providing its standard deviation as
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Binomial vs. Poisson Degree Distribution
The exact form of the degree 
distribution of a random network is the 
binomial distribution. 

For N ≫ <k> the binomial is well 
approximated by a Poisson 
distribution, expressed in terms of 
different parameters: 

● binomial depends on p and N
● Poisson depends on <k> 

It is this simplicity that makes the 
Poisson form preferred in calculations.
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Small Networks: Binomial
For a small network (N = 102) the degree 
distribution deviates significantly from the 
Poisson form (recall assumption N » <k>).

Large Networks: Poisson
For larger networks (N = 103, 104) the 
degree distribution becomes 
indistinguishable from the Poisson 
prediction. Therefore for large N the 
degree distribution is independent of the 
network size.

Degree Distribution is Independent of Network Size
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The degree distribution of a random network 
with <k> = 50 and N = 102, 103, 104.
(Averaged over 1,000 independently 
generated random networks)



The random network model underestimates the size and frequency 
of the high degree nodes, and the number of low degree nodes. 
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predicted

obs.

(Barabasi Ch. 3.5)



The Scale-Free Property
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University of Notre Dame Main Page Back in 1999
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The Topology of the World Wide Web in 1998 (nodes are pages, links are URLs; 
map of the nd.edu domain, ~300k pages and 1.5M links)
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H. Jeong, R.Albert, and A.-L. Barabási. Internet: Diameter of the world-wide web. Nature, 401:130-131, 1999

Note the hubs



The Poisson form offers a poor fit for the WWW’s degree distribution

The incoming (a) and outgoing (b) 
degree distribution of the previous 
WWW sample. Note the log-log 
plot, in which a power law follows 
a straight line. 

The dots correspond to the 
empirical data and the line 
corresponds to the power-law fit, 
with degree exponents γin = 2.1 
and γout = 2.45. 

The green line is the degree 
distribution predicted by a Poisson 
function with the average degree
〈kin〉=〈kout〉= 4.60.
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Instead, the degree distribution is well 
approximated with:



The Poisson form offers a poor fit for the WWW’s degree distribution

The incoming (a) and outgoing (b) 
degree distribution of the previous 
WWW sample. Note the log-log 
plot, in which a power law follows 
a straight line. 

The dots correspond to the 
empirical data and the line 
corresponds to the power-law fit, 
with degree exponents γin = 2.1 
and γout = 2.45. 

The green line is the degree 
distribution predicted by a Poisson 
function with the average degree
〈kin〉=〈kout〉= 4.60.
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log pk is expected to depend linearly on log k, the 
slope of this line being the degree exponent γ:



A scale-free network is a network whose degree 
distribution follows a power law

18



Poisson vs. Power-law Distributions
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(a) Comparing a Poisson function with a power-law 
function (γ= 2.1) on a linear plot. Both distributions 
have ⟨k⟩= 11.

(b) The same curves as in (a), but shown on a 
log-log plot, allowing us to inspect the difference 
between the two functions in the high-k regime.



Poisson vs. Power-law Distributions
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Small k: power law is above the Poisson → a 
scale-free network has a large number of small 
degree nodes, most of which are absent in a 
random network.

k around〈k〉: the Poisson is above the power law → 
in a random network there is an excess of nodes 
with degree k ≈〈k〉

Large k: power law is again above the Poisson → 
observing a high-degree node, or hub, is orders of 
magnitude more likely in a scale-free network.



Poisson vs. Power-law Distributions
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If the WWW were to be a random network with 
<k>=4.6 and size N≈1012, we would expect

nodes with at least 100 links, or effectively none. 

In contrast, given the WWW’s power law degree 
distribution, with γin = 2.1 we have Nk≥100 = 4x109, 
i.e. more than four billion nodes with degree k ≥100.



Poisson vs. Power-law Distributions
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A random network with ⟨k⟩= 3 and N = 50, 
illustrating that most nodes have comparable 
degree k≈⟨k⟩.

A scale-free network with γ=2.1 and ⟨k⟩= 3, 
illustrating that numerous small-degree nodes 
coexist with a few highly connected hubs.



Hubs are Large in Scale-free Networks
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The estimated degree of the 
largest node in scale-free and 
random networks with the same 
average degree ⟨k⟩= 3. 

For comparison, for the linear 
behavior, kmax ∼ N − 1. 

Hubs in a scale-free network are 
several orders of magnitude larger 
than the biggest node in a random 
network with the same N and ⟨k⟩.

γ = 2.5

(Barabasi Ch. 4.3)



Hubs are Large in Scale-free Networks
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In the WWW sample (N ≈ 300k nodes):

If the degree distribution were to follow 
an exponential, kmax ≈ 14 for λ=1. 

If scale-free with γ = 2.1, kmax ≈ 95,000. 

Real (observed) kmax = 10,721, which is 
comparable to kmax predicted by a 
scale-free network.

γ = 2.5

(Barabasi Ch. 4.3)



Summary: Random vs. Scale-free Networks
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In a random network hubs are 
effectively forbidden, while in 
scale-free networks they are 
naturally present.

The more nodes a scale-free network 
has, the larger are its hubs. Indeed, 
the size of the hubs grows 
polynomially with network size. 

In contrast, in a random network the 
size of the largest node grows 
logarithmically or slower with N, 
implying that hubs will be tiny even in 
a very large random network.

Summary
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Universality
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Many Real Networks are Scale-free

The green dotted line shows the Poisson distribution with the same〈k〉as the real 
network, illustrating that the random network model cannot account for the observed pk.



Many Real Networks are Scale-free
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Standard Deviation is Large in Real Networks
For a random network the standard 
deviation follows σ = <k>1/2 shown as a 
green dashed line.

For each network σ is larger than the 
value expected for a random network 
with the same ⟨k⟩. 

The only exception is the power grid, 
which is not scale-free.

(The actor network has a very large ⟨k⟩ 
and σ, and it is omitted) 
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The Ultra Small-World Property
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Intuitively “yes”: Airlines build hubs precisely to decrease the number of hops 
between two airports. 

Do hubs affect the small world property?
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Do hubs affect the small world property?
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Intuitively “yes”: Airlines build hubs precisely to decrease the number of hops 
between two airports. 

Indeed, distances in a scale-free network are smaller than the distances observed 
in an equivalent random network.

The dependence of the average distance ⟨d⟩ on the system size N and the degree 
exponent γ are captured by:



Anomalous Regime (γ = 2)

The degree of the biggest hub 
grows linearly with the system 
size, i.e. kmax ∼ N. 

This forces the network into a 
hub & spoke configuration: all 
nodes are close to each other 
because they all connect to the 
same central hub. 

The average path length does 
not depend on N.
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Ultra-Small World (2 < γ < 3)

The average distance increases 
as ln lnN, a significantly slower 
growth than the lnN derived for 
random networks. 

“Ultra small”: The hubs radically 
reduce the path length by 
linking to many small-degree 
nodes, creating short distances 
between them.



Critical Point (γ = 3)

(When the second moment of 
the degree distribution does not 
diverge any longer)

The lnN dependence 
encountered for random 
networks returns. 

Yet, the calculations indicate 
the presence of a double log 
correction ln lnN, which shrinks 
the distances compared to a 
random network of similar size.
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Small World (γ > 3)

(When the second moment of 
the degree distribution is finite 
does not diverge any longer)

The average distance follows 
the small world result derived 
for random networks. 

While hubs continue to be 
present, for γ > 3 they are not 
sufficiently large and numerous 
to have a significant impact on 
the distance between the 
nodes.
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Now let’s look at the path 
length distribution ((b)-(d)) for 
scale-free networks with 
different γ and N.

While for small networks (N = 
102) the distance distributions 
are not too sensitive to γ, for 
large networks (N = 106) pd and 
⟨d⟩ change visibly with γ.

The larger the degree exponent 
γ, the larger are the distances 
between the nodes.



Summary
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The scale-free property has several effects 
on network distances:

● Shrinks the average path lengths. 
Therefore most scale-free networks of 
practical interest are not only “small”, 
but are “ultra-small”. This is a 
consequence of the hubs, that act as 
bridges between many small degree 
nodes.

● Changes the dependence of ⟨d⟩ on the 
system size. The smaller is γ, the 
shorter are the distances between the 
nodes.

● Only for γ > 3 we recover the ln N 
dependence, the signature of the 
small-world property characterizing 
random networks.



The Role of the Degree Exponent
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Anomalous Regime (γ≤ 2)

For γ< 2 the exponent 1/(γ− 1) 
is larger than one, hence the 
number of links connected to 
the largest hub grows faster 
than the size of the network. 

For sufficiently large N the 
degree of the largest hub 
must exceed the total number 
of nodes in the network, hence 
it will run out of nodes to 
connect to.

Many properties of a scale-free network depend on the value of γ
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Anomalous Regime (γ≤ 2)

Many other anomalous 
features of scale-free 
networks in this regime.

→ Large scale-free network 
with γ < 2, that lack multi-links, 
cannot exist.

Many properties of a scale-free network depend on the value of γ
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Scale-Free Regime (2 < γ < 3)

Scale- free networks in this 
regime are ultra-small: 
kmax grows with the size of the 
network with exponent 1/ (γ - 1), 
which is smaller than one. 

(Hence the share of the largest hub, kmax 
/N, decreases as 

kmax /N ∼ N-(γ-2)/(γ-1).)

Many properties of a scale-free network depend on the value of γ
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Random Regime (γ > 3)

For all practical purposes the 
properties of a scale-free 
network in this regime are 
difficult to distinguish from 
the properties a random 
network of similar size.

E.g., the average distance 
between the nodes converges 
to the small-world formula 
derived for random networks.

Many properties of a scale-free network depend on the value of γ
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Random Regime (γ > 3)

The reason is that for large γ 
the degree distribution pk 
decays sufficiently fast to 
make the hubs small and 
less numerous.

Many properties of a scale-free network depend on the value of γ
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Scale-free networks with large γ are hard to distinguish from a 
random network.

For a scale-free network, the natural cutoff is:

By inverting the formula, we can estimate the network size necessary to observe 
the desired scaling regime:
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Scale-free networks with large γ are hard to distinguish from a 
random network.
To document the presence of a power-law degree distribution we ideally need 2-3 
orders of magnitude of scaling, which means that kmax should be at least 102 - 103 
times larger than kmin.

For example, to document the scale-free nature of a network with γ = 5, requires 
scaling that spans at least two orders of magnitudes (e.g. kmin ∼ 1 and kmax ≃ 102), 
the size of the network must exceed N > 108! 

There are very few network maps of this size. Therefore, there may be many 
networks with large degree exponent. Given, however, their limited size, it is 
difficult to obtain convincing evidence of their scale-free nature.
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Summary

The scale-free property has played 
an important role in the 
development of network science for 
two main reasons:

Many networks of scientific and 
practical interest, from the WWW to 
the subcellular networks, are 
scale-free. 

Once the hubs are present, they 
fundamentally change the system’s 
behavior. More on this later.
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