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Recall: The Random Network Model




A random network consists of N nodes where each node pair is
connected with probability p

Aka “Erdés-Rényi network” — from random graph theory (1959-1968)
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Three realizations of a random network generated with the same parameters
p=1/6 and N=12.



A random network consists of N nodes where each node pair is
connected with probability p

Three realizations of a random network with p=0.03 and N=100. Several nodes
have degree k=0, shown as isolated nodes at the bottom.



The Degree Distribution of Random Networks

In a given realization of a random network some nodes gain many links, while
others acquire only a few or no links.

These differences are captured by the degree distribution, p,, which is the
probability that a randomly chosen node has degree k.



In a random network the probability that node i has exactly
k links is the product of three terms

e The probability that k of its links are present, or pk.
e The probability that the remaining (N-1-k) links are missing, or (1-p)
e The number of ways we can select k links from N- 1 potential links a node can

have, or N—]
k

Consequently the degree distribution of a random network follows the binomial

distribution
N -1

N-1-k



Aside: The Binomial Distribution

If we toss a fair coin N times, tails and heads occur with probability p = 1/2.

The binomial distribution provides the probability p, that we obtain exactly x
heads in a sequence of N throws.

In general, the binomial distribution describes the number of successes in N
independent experiments with two possible outcomes, in which the probability
of one outcome is p, and of the other is 1-p.

N »
p = |p(-p)°
X



Aside: The Binomial Distribution - Useful Properties

The mean of the distribution (first moment) is

N
(x)=D xp, =Np
x=0

Its second moment is
N
(x*)=Y x*p, =p(l—p)N +p°N’
x=0
providing its standard deviation as

5. =(0) — 2): = [p- PN



Binomial vs. Poisson Degree Distribution

The exact form of the degree

distribution of a random network is the j . 1 . . l | l
binomial distribution. 0147 BINOMIAL POISSON

0.12 P (=1 N—1-k P (k)
. . Pr = _|p"(1-p) pr = e VW —
For N > <k> the binomial is well ( k )

, ) 0.1+
approximated by a Poisson Pko 1| Peakat N Pask &t
distribution, expressed in terms of ' k= (k) =p(N - 1) e = (k)
i . 0.06
different parameters: i -
. . 0.0 F ior=n»ll= Ni— L= 31/)
e binomial depends on p and N AT a=p-pW¥ -1 ok = (k)
e Poisson depends on <k> 0‘02( /
—_— 1 | == T fe
It is this simplicity that makes the 0 5 10 15 20 25 30 35

Poisson form preferred in calculations. k
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Degree Distribution is Independent of Network Size

0.1

Small Networks: Binomial POISSON
For a small network (N = 102) the degree 0.075 | ETEMINAL a
distribution deviates significantly from the N=107 °
Poisson form (recall assumption N » <k>). 005 - =10t

Large Networks: Poisson 0.92 T
For larger networks (N = 103, 10%) the ot =
degree distribution becomes 20 3 40 50 60 70 80
indistinguishable from the Poisson S

prediction. Therefore for large N the Ivrl]tf] iigriesg'sat;glﬁzngza;gf i%T network
degree distribution is independent of the (Averaged over 1,000 independently
network size. generated random networks)
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The random network model underestimates the size and frequency
of the high degree nodes, and the number of low degree nodes.
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The Scale-Free Property




University of Notre Dame Main Page Back in 1999

We're continuing to fight for universal access to quality information—and you can help as we continue to make improvements. Will you chip in?

INTERNET ARCHIVE \hn

p://nd.edu/

AR -

643 captures

2 Nov 1996 - 10 Oct 2024

i P ihhj.l st ot b B e

University of Notre Dame;
=

administration  academics  alumni student world religious life.
admissions search nd events & athletics quick info nd tourist

istration] [academics] [alumni] [student world] [religious life]
[admi: ] [search nd] [events & athletics] [quick info] [nd tourist]

Welcome to the Notre Dame Web server. ~ Comments to www@www.nd.edu

University of Notre Dame
Notre Dame, IN 46556
(219) 631-5000
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The Topology of the World Wide Web in 1998 (nodes are pages, links are URLs;
map of the nd.edu domain, ~300k pages and 1..5M Ink)
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H. Jeong, R.Albert, and A.-L. Barabasi. Internet: Diameter of the world-wide web. Nature, 401:130-131, 1999
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The Poisson form offers a poor fit for the WWW's degree distribution
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Instead, the degree distribution is well

approximated with: b ~ k="
k

The incoming (a) and outgoing (b)
degree distribution of the previous
WWW sample. Note the log-log
plot, in which a power law follows
a straight line.

The dots correspond to the
empirical data and the line
corresponds to the power-law fit,
with degree exponents y, = 2.1
andy,, =2.45.

The green line is the degree
distribution predicted by a Poisson
function with the average degree
(k. >=Ck 2= 4.60.

out
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The Poisson form offers a poor fit for the WWW's degree distribution
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log p, is expected to depend linearly on log k, the

slope of this line being the degree exponent y:

logp, ~—ylogk

The incoming (a) and outgoing (b)
degree distribution of the previous
WWW sample. Note the log-log
plot, in which a power law follows
a straight line.

The dots correspond to the
empirical data and the line
corresponds to the power-law fit,
with degree exponents y, = 2.1
andy,, =2.45.

The green line is the degree
distribution predicted by a Poisson
function with the average degree
(k. >=Ck 2= 4.60.

out
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A scale-free network is a network whose degree

distribution follows a power law




Poisson vs. Power-law Distributions

(a) Comparing a Poisson function with a power-law
function (y= 2.1) on a linear plot. Both distributions
have (k)= 11.

(b) The same curves as in (a), but shown on a
log-log plot, allowing us to inspect the difference
between the two functions in the high-k regime.
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(a)

Poisson vs. Power-law Distributions /| , =«

P POISSON

Small k: power law is above the Poisson — a
scale-free network has a large number of small
degree nodes, most of which are absent in a

0.05 =

random network. T
k around{k): the Poisson is above the power law — ®

in a random network there is an excess of nodes
with degree k =(k)

Large k: power law is again above the Poisson —
observing a high-degree node, or hub, is orders of
magnitude more likely in a scale-free network.
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Poisson vs. Power-law Distributions

If the WWW were to be a random network with
<k>=4.6 and size N=10"?, we would expect

= (4.6)°
Nk2100 — 1012 Z ( k6') e—4.6 ~ 10—82

k=100

nodes with at least 100 links, or effectively none.

In contrast, given the WWW's power law degree
distribution, withy. =2.1 we have N, . . =4x10°,
i.e. more than four billion nodes with degree k =100.
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Poisson vs. Power-law Distributions

A random network with (k)= 3 and N = 50, A scale-free network with y=2.1 and (k)= 3,

illustrating that most nodes have comparable illustrating that numerous small-degree nodes
degree k=(k). coexist with a few highly connected hubs.
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Hubs are Large in Scale-free Networks

The estimated degree of the
largest node in scale-free and
random networks with the same
average degree (k)= 3.

For comparison, for the linear

behavior k _~N-1.
max

Hubs in a scale-free network are
several orders of magnitude larger
than the biggest node in a random
network with the same N and (k).

1010 L:_
109 L SCALE-FREE
8 + i - (_11)
1875 (N-1) k ~N
max i’ Y = 25
108 L
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10° RANDOM NETWORK
bl k_~InN
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(Barabasi Ch. 4.3)
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Hubs are Large in Scale-free Networks

In the WWW sample (N = 300k nodes):

If the degree distribution were to follow
an exponential, k _ =14 for A=1.

If scale-free withy =2.1,k = 95,000.

Real (observed) k__ =10,721, which is
comparable to k __ predicted by a
scale-free network.

1010
107

d (N-1) k ~N=

SCALE-FREE

m

RANDOM NETWORK
k_~InN
max

102 104 100 N 108 10° 107

(Barabasi Ch. 4.3)
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Summary: Random vs. Scale-free Networks

(a) POISSON

Number of nodes with k links

Most nodes have

X the same number
/ of links
+>< J No highly
X_t_;\k / connected nodes
L /
T WV
/k>< *\ /
3 r

Number of links (k)

(c) POWER LAW

Number of nodes with k links

Many nodes
//// with only a few links

A few hubs with
large number of links

\J\ §

\\

AT Tk

Number of links (k)

(b)

(d)

Los Angel

/
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Summary

In a random network hubs are
effectively forbidden, while in
scale-free networks they are
naturally present.

The more nodes a scale-free network
has, the larger are its hubs. Indeed,

the size of the hubs grows
polynomially with network size.

In contrast, in a random network the
size of the largest node grows
logarithmically or slower with N,
implying that hubs will be tiny even in
a very large random network.




Universality
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Many Real Networks are Scale-free
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The green dotted line shows the Poisson distribution with the same<(k)as the real
network, illustrating that the random network model cannot account for the observed p, .
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Many Real Networks are Scale-free

NETWORK

Internet

WwWw

Power Grid

Mobile Phone Calls
Email

Science Collaboration
Actor Network
Citation Network

E. Coli Metabolism

Protein Interactions

N

192,244
325,729
4,941
36,595
57,194
23,133
702,388
449,673
1,039
2,018

L

609,066
1,497,134
6,594
91,826
103,731
93,439
29,397,908
4,689,479
5.802
2,930

(k)

1546.0

12.0
94.7

9715
535.7

(Ko

482.4

11.7
1163.9

198.8
396.7

(k%)

240.1

103

47,353.7

323

7in

2.00

4.69*
3.43*

3.03*
2.43*

J/out

2.31

5.01*

2.03*

4.00
290

3.42*

Exp.

3.357

2.12*

2.89*
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Standard Deviation is Large in Real Networks
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For a random network the standard
deviation follows o = <k>"2 shown as a
green dashed line.

For each network o is larger than the
value expected for a random network
with the same (k).

The only exception is the power grid,
which is not scale-free.

(The actor network has a very large (k)
and o, and it is omitted)
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The Ultra Small-World Property




Do hubs affect the small world property?

Intuitively “yes”: Airlines build hubs precisely to decrease the number of hops
between two airports.
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Do hubs affect the small world property?

Intuitively “yes”: Airlines build hubs precisely to decrease the number of hops
between two airports.

Indeed, distances in a scale-free network are smaller than the distances observed
in an equivalent random network.

The dependence of the average distance (d) on the system size N and the degree

exponent y are captured by: ‘
const. Y=
InInN 2<y<3
(d)~{ InN
y=3
Inln N
InN Y>3




HUMAN PPI INTERNET SOCIETY WWW
(a) (2011)
i InN
(v > 3 and random)
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Anomalous Regime (y = 2)

The degree of the biggest hub
grows linearly with the system

size, i.e. kmax ~ N.

This forces the network into a
hub & spoke configuration: all
nodes are close to each other
because they all connect to the
same central hub.

The average path length does

not depend on N.
34



HUMAN PPI INTERNET SOCIETY WWW
(a) (2011)
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Ultra-Small World (2 <y < 3)

The average distance increases
as In InN, a significantly slower
growth than the InN derived for
random networks.

In N
(d)= In{k)

“Ultra small”: The hubs radically
reduce the path length by
linking to many small-degree
nodes, creating short distances
between them.
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HUMAN PPI INTERNET SOCIETY WWW
(a) (2011)
30 - i
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Critical Point (y = 3)

(When the second moment of
the degree distribution does not
diverge any longer)

The InN dependence
encountered for random
networks returns.

Yet, the calculations indicate
the presence of a double log
correction In InN, which shrinks
the distances compared to a
random network of similar size.
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HUMAN PPI INTERNET SOCIETY WWW
(a) (2011)
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(d)
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Small World (y > 3)

(When the second moment of
the degree distribution is finite
does not diverge any longer)

The average distance follows
the small world result derived
for random networks.

While hubs continue to be
present, for y > 3 they are not
sufficiently large and numerous
to have a significant impact on
the distance between the
nodes.
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HUMAN PP
(@)

30

(d)
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SOCIETY

InN
(v > 3 and random)

InInN (2 <y<3)

0.5 T I T 0.5
(b)
0.4 + 4 0.4 F
P4
0.3 4 03
0.2 + 4 02
0.1 F - 01 F
0 ' : ' 0
0 5 d 10 15 20 0
®y=21 @y=3.0 y=5.0 @ RN

5 d 10

15

20

(d)

0

5 d 10 15 20

Now let's look at the path
length distribution ((b)-(d)) for
scale-free networks with
different y and N.

While for small networks (N =
10?) the distance distributions
are not too sensitive to y, for
large networks (N = 10°) p,, and
(d) change visibly with y.

The larger the degree exponent
Y, the larger are the distances
between the nodes.



Summary

The scale-free property has several effects
on network distances:

Shrinks the average path lengths.
Therefore most scale-free networks of
practical interest are not only “small”,
but are “ultra-small”. This is a
consequence of the hubs, that act as
bridges between many small degree
nodes.

Changes the dependence of (d) on the
system size. The smallerisy, the
shorter are the distances between the
nodes.

Only fory > 3 we recover the In N
dependence, the signature of the
small-world property characterizing
random networks.




The Role of the Degree Exponent




Many properties of a scale-free network depend on the value of vy

ANOMALOUS SCALE-FREE RANDOM
o REGIME
Anomalous Regime (y= 2) o REBIME -
No large network Indistinguishable
can exist here from a random network
D2
For y< 2 the exponent 1/(y- 1) S o8 S & Q)&i« .
. N & o N o &
is larger than one, hence the SFESE & & &
number of links connected to SR : i
the largest hub grows faster L ¥ _ e 1
than the size of the network. 1 2 3 Y
(k) DIVERGES <k> FINITE <A> FINITE
=3
. k*) DIVERGES =2 k>) DIVERGES K2\ BN
For sufficiently large N the ) N ) @ - )
degree of the largest hub
CRITICAL
must exceed the total number ()~ cons Bt POINT @)~ hjg
of nodes in the network, hence ks
. k., GROWS FASTER THAN N ULTRA-SMALL SMALL
it will run out of nodes to WORLD WORLD

connect to. L NE



Many properties of a scale-free network depend on the value of vy

ANOMALQUS SCALE-FREE RANDOM
Anomalous Regime (y= 2) o RECIME ——
No large network Indistinguishable
can exist here from a random network
Y
Many other anomalous S o 8 S & %&v«i .
O € § o Sigs S S &
features of scale-free HFESE S & FE
networks in this regime. 1 B I 5 '
— Large scale-free network 1 " 2 " 3 %
. I k) DIVERGES k)  EINITE k) FINITE
with y < 2, that lack multi-links, ‘ - k)
. <k2> DIVERGES y=2 <k2> DIVERGES {57 <k3> FINITE
cannot exist. b =N Sy
CRITICAL
, POINT InN
(d) ~ const (d) ~ InlnN (d)~ In(k)
kmaxGROWS FASTER THAN N ULTRA-SMALL SMALL
WORLD WORLD

k_~N7T

max



Many properties of a scale-free network depend on the value of vy

ANOMALOUS SCALE-FREE RANDOM
. REGIME
Scale-Free Regime (2 <y < 3) o RECIME o
No large network Indistinguishable
can exist here from a random network
. . S
Scale- free networks in this S o & S K Q,o%i« \
. S QS @ O 3 Yl
regime are ultra-small: SES & S& & FE
K .o 9rows with the size of the
network with exponent 1/ (y - 1) T ¥ _ ]
which is smaller than one. 1 2 /\3
(k) DIVERGES ; ; <k> FINITE "X (k) FINITE
<k2> DIVERGES » y=2 <k2> DIVERGES yzlan <k2> FINITE
huws =N () - InInN
(Hence the share of the largest hub, k , “PONT InN
/N, decreases as e~ consy e - In(k)
k__GROWS FASTER THAN N ULTRA-SMALL SMALL
K /N~ N2/ WORLD WORLD
max

k ~N7

max



Many properties of a scale-free network depend on the value of vy

ANOMALQUS SCALE-FREE RANDOM
: REGIME REGIME REGIME
Random Reglme (v > 3) No large network Indistinguishable
can exist here from a random network
For all practical purposes the S o 8 S & Q’O@;"Z .
. \\\/\ N S i > N O3 \\/\\
properties of a scale-free SFESE & & & E
network in this regime are 1 B I 5 : :
difficult to distinguish from L 5 _ I
the properties a random 1 2 3 %
L. . (k) DIVERGES <k> FINITE (k) FINITE
network of similar size. g
<k2> DIVERGES y=2 <k2> DIVERGES {57 <k1> FINITE
ko =N <d> " InlnN
E.g., the average distance
CRITICAL
between the nodes converges () - const g POINT <">”1]?Z
to the small-world formula o
. kmaxGROWS FASTER THAN N ULTRA-SMALL SMALL
derived for random networks. WORLD WORLD

ke~ N7



Many properties of a scale-free network depend on the value of vy

I
ANOMALOUS SCALE-FREE RANDOM
H REGIME REGIME REGIME
Random Reglme (v > 3) No large network Indistinguishable
can exist here from a random network
. >
The reason is that for large y RO S & Q,g@f@ R
the degree distribution p, HFESE & & TES
decays sufficiently fast to IR :
make the hubs small and 1
less numerous. 1 2 3
(k) DIVERGES <k> FINITE (k) FINITE
<k2> DIVERGES ‘ y=2 <k2> DIVERGES , yzlan <k3> FINITE
b =N \d = InlInN
CRITICAL
POINT
(d) ~ const (d) ~InInN (d)~ 1;25:;
kmaxGROWS FASTER THAN N ULTRA-SMALL SMALL
WORLD WORLD

k ~N7

max



Scale-free networks with large y are hard to distinguish from a
random network.

For a scale-free network, the natural cutoff is:

By inverting the formula, we can estimate the network size necessary to observe

the desired scaling regime:
(k TI
N —_ max
kmin
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Scale-free networks with large y are hard to distinguish from a
random network.

To document the presence of a power-law degree distribution we ideally need 2-3
orders of magnitude of scaling, which means thatk _ should be at least 10%2-103
times larger thank . .

For example, to document the scale-free nature of a network with y = 5, requires
scaling that spans at least two orders of magnitudes (e.g.k . ~Tandk _ = 10%),
the size of the network must exceed N > 108!

There are very few network maps of this size. Therefore, there may be many
networks with large degree exponent. Given, however, their limited size, it is
difficult to obtain convincing evidence of their scale-free nature.
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The scale-free property has played
an important role in the
development of network science for
two main reasons:

S Many networks of scientific and

u m m a ry practical interest, from the WWW to
the subcellular networks, are
scale-free.

Once the hubs are present, they
fundamentally change the system’s
behavior. More on this later.




