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Quick Recap — Last Tuesday’s Lecture

Carefully examine assumptions of network measures:
- Centrality metrics do not accurately predict “power” in negatively connected
exchange networks (zero-sum)

Make the hidden assumptions explicit:
- Bonacich power centrality explicates the assumption with the beta parameter
- Better prediction of power use in experimental data (higher resource gains)

Further creative extensions:
- Building on the eigenvector-like centrality measure
- Insight: Fragility of neighbors increases my fragility
- Used Herfindahl index of concentration instead of node degree



Social networks are full of easy to spot

“communities” (cohesive subgroups)




Twitter users

Retweet network of politicat. . -
o B

hashtags on Twitter prior to “__*

the 2010 US election. R




Twitter users

Bidirected @mention network
among Singapore Twitter
users

Colors based on community
detection

Q: What attribute do you think
the colors correspond to?

(Patrick Park, unpublished)



Belgian mobile phone users

The nodes correspond to
communities.

The color represents the language = :
spoken in the particular o
community: red for French and
green for Dutch.

Bridge communities (Brussels)
show less obvious language
separation.

(Blondel et al, 2008)



Subgroups: easy to spot, but tricky to define

Social group is fundamental to humans
Yet a “group” lacks formal definition

- Too “obvious” to define
- But what is a group?

[
They come in all size, shapes, and forms
- Size (family, nation state)
- Intimacy (private vs. professional)
- Language
- Geography

- Means of production (capitalist vs. proletariat)



Subgroups: easy to spot, but tricky to define

The difficulty is apparent when you try to Exploration & Production
define groups top-down i e Fassn
Exptoretion  Orining  Proguction
- University C, Department X, Unit Z L" T W
- Member overlap: Department X and Y can T e : e
share common members - e
- Informal groups: Some members in X ! .
have stronger ties to membersinY \
|
Actual cohesion does not always form along e i
formal groups Source: Rl Cross, Whatis ONAT htp// i obcross.crgnetwork_ona b



Subgroups: easy to spot, but tricky to define

The network approach is a bottom-up approach
to quantifying subgroups based on:

- Direct connections:
- Clique: maximal subset of nodes with direct ties to

one another
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Subgroups: easy to spot, but tricky to define

The network approach is a bottom-up approach
to quantifying subgroups based on:

- Direct connections:
Cligue: maximal subset of nodes with direct ties to
one another

- Distance:

n-clan: Maximal subgraph of nodes that are within
a path length n only through the nodes in that
subset

12

2-clan: {2, 3, 4, 5, 6}

1
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Subgroups: easy to spot, but tricky to define

The network approach is a bottom-up approach
to quantifying subgroups based on:

- Direct connections:
- Cligue: maximal subset of nodes with direct ties to
one another
- Distance:
- n-clan: Maximal subgraph of nodes that are within
a path length n only through the nodes in that
subset
- Redundancy (many ways to reach others):
- k-core: Maximal subgraph in which every node has
edges to at least k other nodes in the subgraph

Input Graph

k-core

3-Cores
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Subgroups: easy to spot, but tricky to define

The network approach is a bottom-up approach
to quantifying subgroups based on:

- Direct connections:

- Clique: maximal subset of nodes with direct ties to
one another

- Distance:
- n-clan: Maximal subgraph of nodes that are within

a path length n only through the nodes in that
subset

- Redundancy (many ways to reach others):
- k-core: Maximal subgraph in which every node has
edges to at least k other nodes in the subgraph
- k-component: Every node has at least k
non-overlapping paths to every node in the
subgraph

k-components
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Basic concepts

Internal links (black links)

Internal (black links) & external (blue
links) degree of a node in the
community (green nodes)

ként klgxt

4

\ >

Community degree (sum of num
neighbors of each internal node)

ke = Zki.

ieC




Recall

The maximum number of links in an
undirected network with N nodes:

?

The density of a network with N
nodes and L links:
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Recall

The maximum number of links in an
undirected network with N nodes:
N
o = ( ) = NN — 1)/2.
g
The density of a network with N "4
nodes and L links: l

\ >
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Basic concepts

Internal link density:

Lc 2Lc

(Sim‘= = .
C =) T Nee—D




Intuition: Nodes within a “"community” have higher likelihood of

connecting to each other than to nodes from other “communities.”
—s high “cohesion,” high “separation”
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Aside: Cliques have high cohesion, but aren’t realistic communities

Real communities aren't as dense as

cliques. O
In real communities some nodes are /J \./‘

more important than others.

-

Better: The number of internal links
should be larger than the number of
external links.

19



“Strong” vs “weak” communities

Strong Weak
The internal degree of each node The sum of internal degrees of all nodes
exceeds its external degree towards exceeds the sum of their external degrees
other communities. in other communities.

strong — weak




The communities in many real-world networks overlap

21



Partitions can be hierarchical when the network has
multiple levels of organization
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So, how to find the communities?




1. Graph partitioning — old problem




Min-cut problem

Partition the vertices of a graph into two
disjoint subsets, such that the number of
links between the two subsets is minimal.

Thoughts?
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Min-cut graph bisection doesn’t quite work
Trivial solution to minimizing cut size: :
single cluster containing the entire :
network gives cut size of zero. ,

— Need to specify the number of
clusters beforehand.

(Also need to specify size of each cluster beforehand. Example: one leaf vs
all other nodes)
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Kernighan-Lin graph bisection algorithm
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Kernighan-Lin graph bisection algorithm

"\
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Greedy, risks getting stuck
in local optima.




Not bad, but we can do better.

Clusters identified via network partitioning are well-separated but
not necessarily cohesive.
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2. Clustering — also old problem




Next we can apply agglomerative hierarchical clustering

Start from the trivial partition into N groups. At each step, merge the pair of groups
with the largest similarity. Repeat until all nodes are in the same group.

Zachary'’s karate club network.
Node 0: instructor. Node 33: club president

|

Il
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Next we can apply agglomerative hierarchical clustering

Start from the trivial partition into N groups. At each step,
merge the pair of groups with the largest similarity.
Repeat until all nodes are in the same group.

Complexity:

We need to compare O(N?) node pairs to compute
pairwise similarity.

Group similarity requires us to determine in each
step the distance of the new cluster to all other
clusters. Doing this N times requires O(N?)
calculations.

The construction of the dendrogram can be
performed in ¢ steps.

Total O(N?).

O(NlogN) priority queue
insert/delete for N nodes

41—‘

0O(N?)

,_i_
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The main ingredient is a similarity measure between nodes

A classic example is structural equivalence, which expresses the similarity
between the neighborhoods of a pair of nodes.
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We also need to define similarity for groups of nodes

Given a node similarity measure S and two groups of nodes G1 and G2:
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As many partitions as there are nodes — Unclear which partition is

meaningful for the given network. Plus, rather slow.

35



3. Community detection




3.1. Bridge removal

Key idea: Find links with high betweenness and remove them.

Link betweenness defined similarly to node betweenness centrality in previous
lecture — fraction of shortest paths that run through that link.

Link betweenness should be higher for bridges than for links inside a cluster.
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Example calculating link betweenness

Inter-community links, like the central
link in the figure with xij=0.57, have
large betweenness.

The calculation of link betweenness
scales as O(LN), or O(N?) for a sparse
network.
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Girvan-Newman algorithm (similar to hierarchical clustering)




Girvan-Newman algorithm on Zachary’s karate club: 2 clusters

(subjective / expert interpretation)
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Girvan-Newman algorithm - reflections

Slow — must recompute the betweenness of all links each iteration.

e Step 2 introduces an additional factor L in the running time, hence the
algorithm scales as O(L?N), or O(N?) for a dense network.

Improvement: recompute betweenness only within the connected component
including the last removed link.
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We still need a measure of the quality of a partition.
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Modularity

The difference between the number of links internal to all clusters and the

expected equivalent number in a randomized network.
Randomization strategy: maintain number of )

nodes and degree sequence, shuffle links. Q Q
=>

@ O
U

(©) (d)
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Modularity

Left network: visible community
structure (high modularity).

Right network: degree-preserving
randomization — fewer internal links

and more links between the subnets.
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Modularity

The modularity of a partition in an undirected, unweighted network:

ke

1
= — Lc— — |
0= 75 (- 5¢)
C
Lc is the number of internal links in cluster C, kc is the total degree of nodes in C.

ke (total num stubs attached to nodes in C) stays constant in each randomization,
by construction.

The probability of selecting one of these stubs at random is: kc/2L

2
Th lity of pick f f A
e probability of picking a pair of stubs from C at random is 5 af a72
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Modularity

The modularity of a partition in an undirected, unweighted network:

What happens when there is a single cluster?
CanQ =17
CanQ<0?
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Modularity

The modularity of a partition in an undirected, unweighted network:
1 k-
= _ Ee— i
0= 7% (1~ )
c
What happens when there is a single cluster? — Q = 0 (L.=L, k,=2L)

CanQ=1?—>No Q. =Q cLo/L)

max

Can Q < 0? — Yes (partition into N singletons: L ,=0)
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The higher the modularity for a partition, the better the
corresponding community structure

OPTIMAL PARTITION SINGLE COMMUNITY

M =0 .41
; M=0 ;

(b) SUBOPTIMAL PARTITION NEGATIVE MODULARITY
M=0.22 M= -0.12
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Use modularity to decide which partition predicted by a
hierarchical method offers the best community structure

Q@

Select the one
for which M is
maximal!

ABCDEFJHIJK




Largest modularity value in Zachary’s Karate Club: five clusters
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Big limitation so far: A node rarely belongs to a single community!
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Summary

Communities play a key role in the
structure and function of networks.

But communities are not well-defined
objects.

Network partitioning searches for
well-separated subnetworks.

Hierarchical clustering groups nodes
based on their similarity. Biggest
drawback: lack of criterion for
selecting meaningful partitions.

Bridge removal (same drawback).

Modularity optimization (Louvain)
widely used in practice.




