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Quick Recap — Last Thursday’s Lecture

Graph theory as our basic formalism for modeling networks
Basic building blocks: nodes and links e—0
Most basic structure: dyads
Degree and degree distribution é
Paths (shortest paths)

The Breadth-first search algorithm to compute distances

Adjacency matrices as an algebraic representation of networks

Network properties as matrix operations!



Plan for Today

More on connectedness and connected components
Random graphs, revisiting Six Degrees of Kevin Bacon

Larger building blocks: from dyads to triads

(B Ch. 2.9-2.10, Ch. 3 except 3.9) (E&K Ch. 4)
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Connectedness




Connectivity as Access

Access to people
Access to information and resources
Access to human hosts for viruses

— The extent to which people are connected and accessible matters for
understanding social processes (segregation, commerce, diffusion,
contagion)



In a “Connected” Graph, There Is a Path Between Every Pair
of Nodes

This example shows two disconnected components. If a network has
disconnected components, the adjacency matrix (right) can be rearranged
into a block diagonal form.
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\0 001 110)/

(Barabasi, 2016)



When a Network Contains a Giant Component, It Almost
Always Contains Only One

Why?




When a Network Contains a Giant Component, It Almost
Always Contains Only One

Imagine there were two giant components in the global friendship network
example, each with hundreds of millions of people.

All it would take is a single edge from someone in the first of these components to
someone in the second, and the two giant components would merge into a single
component!

It's essentially inconceivable that some such edge wouldn’t form, and hence two
co-existing giant components are almost never seen in real networks.



When a Network Contains a Giant Component, It Almost
Always Contains Only One
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When a Network Contains a Giant Component, It Almost

Nominations Between Camps

Always Contains Only One
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https://www.nature.com/articles/nature10736#MOESM246

A “Bridge” (2—4) Can Turn a Disconnected Network Into a
Single Connected Component.

Note: The adjacency matrix cannot be written in a block diagonal form.
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(Barabasi, 2016)
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Recall the BFS Algorithm

Assume we're starting
from the orange node, (a)
labeled “0."

(Barabasi, 2016)
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Recall the BFS Algorithm

Assume we're starting
from the orange node,

labeled “0.” (b)

First, we identify all its
neighbors, labeling
them “1”.

(Barabasi, 2016)
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Recall the BFS Algorithm

Next we label “2" the

unlabeled neighbors of

all nodes labeled “1”, and (C)
SO on, in each iteration
increasing the label
number, until no node is
left unlabeled.

(Barabasi, 2016)
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Recall the BFS Algorithm

Ultimately, the length of

the shortest path, or the
distance dOi between (d)
node 0 and any other

node i in the network, is

given by the label of node
: 3

For example, the
distance between node 0
and the leftmost node is
d=3.

(Barabasi, 2016)
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Can We ldentify Connected Components Using BFS?

(Barabasi, 2016)



We Can ldentify Connected Components Using BFS!

(1) Start from a randomly
chosen node i and perform a
BFS. Label all nodes reached
this way withn = 1.

(Barabasi, 2016)
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We Can ldentify Connected Components Using BFS!

(2) If the total number of labeled
nodes equals N, then the
network is connected.

If the number of labeled nodes
is smaller than N, the network
consists of several components.

(Barabasi, 2016)
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We Can ldentify Connected Components Using BFS!

(3) Increase the labeln — n + 1.

Choose an unmarked node j,
label it with n.

Use BFS to find all nodes
reachable from j, label them all
with n.

Return to step 2.

(Barabasi, 2016)
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The Random Network Model




A random network consists of N nodes where each node pair is
connected with probability p

Aka “Erdés-Rényi network” — from random graph theory (1959-1968)
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Three realizations of a random network generated with the same parameters
p=1/6 and N=12.



A random network consists of N nodes where each node pair is
connected with probability p

Three realizations of a random network with p=0.03 and N=100. Several nodes
have degree k=0, shown as isolated nodes at the bottom.
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Why Random Network Models?

Q: Are the edges in social networks random?
Q: How are ties in social networks created?

Q: If a social tie is not formed by a coin toss (i.e., random), why should we
study random networks?

(Barabasi Ch. 3.3)
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Common question: How many links can we expect for a particular
realization of a random network with fixed Nand p?

The probability that a random

network has exactly L links is:

N(N —1)
2

L)=p

(note, the second term is the
total number of dyads)

(Barabasi Ch. 3.3)

The average degree of a
random network is:

ALY

(k) === p(N =1

(note, the second term is the
max possible node degree)
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Common question: How many links can we expect for a particular
realization of a random network with fixed N and p?

The number of links in a random network varies between realizations.
Its expected value is determined by N and p.
With larger p, a random network becomes denser:

The average number of links increases linearly from <L>=0to L _

X

The average degree of a node increases from <k> = 0 to <k> = N-1.

(Barabasi Ch. 3.3) 26



The random network model underestimates the size and frequency
of the high degree nodes, and the number of low degree nodes.
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We will come back and improve on this later.

But for now, at least let’s explain why you'll be out of good cake fast!
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Connected Components in Random Networks




Let’s inspect how the size of the largest connected component

within the network, Ng, varies with </

For p = 0 we have <k> = 0, hence all nodes are
isolated. Therefore the largest component has
size N, =1 and N /N—0 for large N.

For p = 1 we have <k>= N-1, hence the network is
a completely connected graph and all nodes
belong to a single component. Therefore N, =N
and N/N =1.

The average degree of a
random network is:

(k) =25 = N -1
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Let’s inspect how the size of the largest connected component
within the network, N ,, varies with </

For p = 0 we have <k> = 0, hence all nodes are
isolated. Therefore the largest component has -
size N, = 1 and N /N—?0 for large N. random network is:

For p = 1 we have <k>= N-1, hence the network is (k) — & (N _ |)
a completely connected graph and all nodes
belong to a single component. Therefore N, =N

The average degree of a

and NG/N =1.

One would expect that the largest component grows gradually from N, =1
to N, = N if <k> increases from 0 to N-1. Right?



Let’s inspect how the size of the largest connected component
within the network, N ,, varies with </

For p = 0 we have <k> = 0, hence all nodes are
isolated. Therefore the largest component has
size N, =1 and N /N—0 for large N.

The average degree of a
random network is:

2<L>
For p =1 we have <k>= N-1, hence the network is <k> - (N — |)
a complete graph and all nodes belong to a single

component. Therefore N, =N and N /N = 1.

One would expect that the largest component grows gradually from N, =1
to N, = N if <k> increases from 0 to N-1. Right? Wrong



N, /N

Critical -

Point /

Supercritical Regime
(single giant component)

d<1 ky=1

(Barabasi Ch. 3.6; Erd6s & Rényi, 1959 )
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N, /N

- Critical _—
Point /
0.6
Subcritical /
0.4 Regime

(no giant component) /
62

ky<1 do=1

(Barabasi Ch. 3.6; Erd6s & Rényi, 1959 )

We have one giant component iff each
node has on average more than one link.

That we need at least one link per node
to observe a giant component is not
unexpected.

But it is arguably counter-intuitive that
one link is sufficient for its emergence.
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N, /N

Critical _—

Point /

ky<1 k=1

(Barabasi Ch. 3.6; Erd6s & Rényi, 1959 )

What's the average degree <k> in the
HW1 networks?

Is <k> > 1? Implying that they have a
giant component.
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Connected
Regime

(single giant component)

(Barabasi Ch. 3.6; Erd6s & Rényi, 1959 )

4 5
(k)
° ®
® o : e 0 :.
ANV : o e "’;.;' .: S
e 4 - 8
EP O o DR . )
» 0.',‘. 7.: ‘..;. » PO ".:.".;7 ':.
w0 BT BEL KO _eg—of S e SR e
e e «.° ° LRNN % s 2T
. @ @ @ X & 2O\ Y
| & ® ® [\ ¥ ." ® vy
V" %l 2 » AN
* e L Mg '
P o o % o ®
° ! ’ 4
@ [ Y
5 ®
ky>1 (k) » InN

What's the average degree <k> in the
HW1 networks?

e Is <k>> 1?7 Implying that they have a
giant component.

e Is <k>>InN? Implying that they have a
single giant component.

(For the world population, if the average
individual has more than In(7 x10°) =
22.7 acquaintances, then the global
network must have a single component)
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Most real networks are supercritical

INTERNET . X - l.e., expected to be broken into
numerous isolated components.
CCECI F S
Except for the actor network,
SCIENCE . X _ with a Single giant component.
COLLABORATION
ACTOR NETWORK . . -
more S
INTERACTIONS

I 1 >
1 10 (k)
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Back to Six Degrees of Kevin Bacon

(Aka the “Small world” phenomenon)




Small world property: The distance between any two nodes in a
network is small.

Consider a random network with average degree
<k>. A node in this network has on average:
e How many nodes at distance one (d=1)?

(Barabasi Ch. 3.8)
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Small world property: The distance between any two nodes in a
network is small.

Consider a random network with average degree
<k>. A node in this network has on average:

e <k>nodes at distance one (d=1)

e How many nodes at distance two (d=2)?

(Barabasi Ch. 3.8)
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Small world property: The distance between any two nodes in a
network is small.

Consider a random network with average degree
<k>. A node in this network has on average:

e <k>nodes at distance one (d=1)

e <k>2nodes at distance two (d=2)

(Barabasi Ch. 3.8)
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Small world property: The distance between any two nodes in a
network is small.

Consider a random network with average degree
<k>. A node in this network has on average:

e <k>nodes at distance one (d=1)

e <k>?nodes at distance two (d=2

e <k>3nodes at distance three (d =3)

e <k>9nodes at distance d

E.g., if <k>= 1,000 (the estimated number of
acquaintances an individual has), we expect 10°
individuals at d=2 and about a billion, i.e. almost
the whole earth’s population, at d=3 from us.

(Barabasi Ch. 3.8)
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“Small” as in proportional to InN, rather than N (or a power of N)

The dependence of the average distance

1D LATTICE -
in a random network on N and <k>: (@)~N 2D LATTICE
In N 000 <d>~N1/2
(d)= In{k)
3D LATTICE
(d) (d)~N3

The distances in a random network are
orders of magnitude smaller than the
size of the network.

RANDOM
. NETWORK

(For our world social network, if N = 7 x10°
and <k>= 10°, we get (d)= 3.28.)
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“Small” as in proportional to InN, rather than N (or a power of N)

In N

Why (d)= G ?

(Barabasi Ch. 3.8)
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“Small” as in proportional to InN, rather than N (or a power of N)

In N

Why (d)= Gk ?

How many steps does it take from Jane to reach
all N-1 people in the network?

(Barabasi Ch. 3.8)
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“Small” as in proportional to InN, rather than N (or a power of N)

In N
?
In¢k)

Why (d)=

How many steps does it take from Jane to reach
all N-1 people in the network?

<k> + <k>2+ <k>3 + ... + <k>% = N-T
In( <k> + <k>2+ <k>3+ ... + <k>9) = In(N-1)

(Barabasi Ch. 3.8)
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“Small” as in proportional to InN, rather than N (or a power of N)

In N
?
In¢k)

Why (d)=

How many steps does it take from Jane to reach
all N-1 people in the network?

<k> + <k>2+ <k>3 + ... + <k>9 = N-1
In( <k> + <k>?+ <k>3+ ... + <k>?) = In(N-1)

For large N,

In <k>? ~ InN
d * In<k> ~ InN
d ~ InN / In<k>

(Barabasi Ch. 3.8)
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Six degrees: Experimental confirmation

15 |-

10 |-

NUMBER OF CHAINS

01 2 3 456 78 9 10Mhn
NUMBER OF INTERMEDIARIES

Recall (Milgram, 1967) — the letter

forwarding study: median 5.2 hops
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(Backstrom et al, 2012)
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Six degrees: Experimental confirmation

Q: If the Facebook friendship network
were a random graph, what would be
the average shortest path length? <d>?

In N
In{k)

(d)=

0.7
0.6 - Worldwide -
USA -e
0.5 - -
Py
0.4 -
0.1 -
0.2 -
0.1 -
0 o—e ' '
0 2 4 d 6 8 10

Facebook 2011 network (721M active

users, 68B symmetric friendship links):

average distance 4.74

(Backstrom et al, 2012)
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Six degrees: Experimental confirmation

Q: If the Facebook friendship network
were a random graph, what would be
the average shortest path length? <d>?

In N
d)=
@ In{k)
N =721,000,000

L = 68,000,000,000
<k>=2L/N = 188.6
<d>~In(721,000,000)/In(188.6) = 3.892

0.7
0.6 - Worldwide -
USA -e
0.5 - -
Py
0.4 -
0.1 -
0.2 -
0.1 -
0 o—e - '
0 2 4 d 6 8 10

Facebook 2011 network (721M active

users, 68B symmetric friendship links):

average distance 4.74

(Backstrom et al, 2012)
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Six degrees: Experimental confirmation

Q: If the Facebook friendship network
were a random graph, what would be
the average shortest path length? <d>?

In N
d)=
@ In{k)
N =721,000,000

L = 68,000,000,000
<k>=2L/N = 188.6
<d>~In(721,000,000)/In(188.6) = 3.892

0.7
0.6 - Worldwide -
USA -e
0.5 - -
Py
0.4 -
0.1 -
0.2 -
0.1 -
0 o—e - '
0 2 4 d 6 8 10

Facebook 2011 network (721M active

users, 68B symmetric friendship links):

average distance 4.74

(Backstrom et al, 2012)
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Six degrees: Experimental confirmation

Random graph: Facebook 2011 observed network:

<d>~In(721,000,000)/In(188.6) =3.892 < d~4.74

We can use the random graph as a baseline model to compare against
actually observed networks.

Here, the observed network is not as small a world as the random graph!

Q: Why is the actual distance longer?
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Today’s Summary

Giant components
The random graph model

An explanation for Six Degrees of Kevin Bacon
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