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Quick Recap – Last Thursday’s Lecture
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Graph theory as our basic formalism for modeling networks

Basic building blocks: nodes and links

Most basic structure: dyads

Degree and degree distribution

Paths (shortest paths)

The Breadth-first search algorithm to compute distances

Adjacency matrices as an algebraic representation of networks

Network properties as matrix operations!



More on connectedness and connected components

Random graphs, revisiting Six Degrees of Kevin Bacon

Larger building blocks: from dyads to triads

Plan for Today
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(B Ch. 2.9–2.10, Ch. 3 except 3.9) (E&K Ch. 4)



Connectedness
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Connectivity as Access
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Access to people

Access to information and resources

Access to human hosts for viruses

→ The extent to which people are connected and accessible matters for 
understanding social processes (segregation, commerce, diffusion, 
contagion)



In a “Connected” Graph, There Is a Path Between Every Pair 
of Nodes
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This example shows two disconnected components. If a network has 
disconnected components, the adjacency matrix (right) can be rearranged 
into a block diagonal form.

(Barabasi, 2016)



When a Network Contains a Giant Component, It Almost 
Always Contains Only One
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Why?



When a Network Contains a Giant Component, It Almost 
Always Contains Only One
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Imagine there were two giant components in the global friendship network 
example, each with hundreds of millions of people. 

All it would take is a single edge from someone in the first of these components to 
someone in the second, and the two giant components would merge into a single 
component! 

It’s essentially inconceivable that some such edge wouldn’t form, and hence two 
co-existing giant components are almost never seen in real networks.



When a Network Contains a Giant Component, It Almost 
Always Contains Only One
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Example: Silk Road



When a Network Contains a Giant Component, It Almost 
Always Contains Only One
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Example: Hunter-gatherer 
society (Apicella et al. 2012)

https://www.nature.com/articles/nature10736#MOESM246


Note: The adjacency matrix cannot be written in a block diagonal form.

A “Bridge” (2–4) Can Turn a Disconnected Network Into a 
Single Connected Component.

12(Barabasi, 2016)



Recall the BFS Algorithm
Assume we’re starting 
from the orange node, 
labeled “0.”

13(Barabasi, 2016)



Recall the BFS Algorithm
Assume we’re starting 
from the orange node, 
labeled “0.”

First, we identify all its 
neighbors, labeling 
them “1”.

14(Barabasi, 2016)



Recall the BFS Algorithm
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Next we label “2” the 
unlabeled neighbors of 
all nodes labeled “1”, and 
so on, in each iteration 
increasing the label 
number, until no node is 
left unlabeled.

(Barabasi, 2016)



Recall the BFS Algorithm
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Ultimately, the length of 
the shortest path, or the 
distance d0i between 
node 0 and any other 
node i in the network, is 
given by the label of node 
i. 

For example, the 
distance between node 0 
and the leftmost node is 
d = 3.

(Barabasi, 2016)



Can We Identify Connected Components Using BFS?

17(Barabasi, 2016)



We Can Identify Connected Components Using BFS!
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(1) Start from a randomly 
chosen node i and perform a 
BFS. Label all nodes reached 
this way with n = 1.

n = 1

n = 1

n = 1

(Barabasi, 2016)



We Can Identify Connected Components Using BFS!
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(2) If the total number of labeled 
nodes equals N, then the 
network is connected. 

If the number of labeled nodes 
is smaller than N, the network 
consists of several components.

n = 1

n = 1

n = 1

(Barabasi, 2016)



We Can Identify Connected Components Using BFS!
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(3) Increase the label n → n + 1. 

Choose an unmarked node j, 
label it with n. 

Use BFS to find all nodes 
reachable from j, label them all 
with n. 

Return to step 2.

n = 1

n = 1

n = 1

n = 2

n = 2

n = 2

n = 2

(Barabasi, 2016)



The Random Network Model
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Three realizations of a random network generated with the same parameters 
p=1/6 and N=12.

A random network consists of N nodes where each node pair is 
connected with probability p
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Aka “Erdős-Rényi network” – from random graph theory (1959–1968)

L=10 L=10 L=8



Three realizations of a random network with p=0.03 and N=100. Several nodes 
have degree k=0, shown as isolated nodes at the bottom.

A random network consists of N nodes where each node pair is 
connected with probability p

23



Q: Are the edges in social networks random?

Q: How are ties in social networks created?

Q: If a social tie is not formed by a coin toss (i.e., random), why should we 
study random networks?

Why Random Network Models?

24(Barabasi Ch. 3.3)



The probability that a random 
network has exactly L links is:

(note, the second term is the 
total number of dyads)

Common question: How many links can we expect for a particular 
realization of a random network with fixed N and p?

25(Barabasi Ch. 3.3)

The average degree of a 
random network is:

(note, the second term is the 
max possible node degree)



The number of links in a random network varies between realizations. 

Its expected value is determined by N and p. 

With larger p, a random network becomes denser: 

The average number of links increases linearly from <L> = 0 to Lmax 

The average degree of a node increases from <k> = 0 to <k> = N-1.

Common question: How many links can we expect for a particular 
realization of a random network with fixed N and p?

26(Barabasi Ch. 3.3)



The random network model underestimates the size and frequency 
of the high degree nodes, and the number of low degree nodes. 

27

predicted

obs.

(Barabasi Ch. 3.5)



We will come back and improve on this later.
But for now, at least let’s explain why you’ll be out of good cake fast!

28



Connected Components in Random Networks
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The average degree of a 
random network is:

For p = 0 we have <k> = 0, hence all nodes are 
isolated. Therefore the largest component has 
size NG = 1 and NG/N→0 for large N.

For p = 1 we have <k>= N-1, hence the network is 
a completely connected graph and all nodes 
belong to a single component. Therefore NG = N 
and NG/N = 1.

Let’s inspect how the size of the largest connected component 
within the network, NG , varies with <k>

30



The average degree of a 
random network is:

Let’s inspect how the size of the largest connected component 
within the network, NG , varies with <k>

31

One would expect that the largest component grows gradually from NG = 1 
to NG = N if <k> increases from 0 to N-1. Right?

For p = 0 we have <k> = 0, hence all nodes are 
isolated. Therefore the largest component has 
size NG = 1 and NG/N→0 for large N.

For p = 1 we have <k>= N-1, hence the network is 
a completely connected graph and all nodes 
belong to a single component. Therefore NG = N 
and NG/N = 1.



The average degree of a 
random network is:

For p = 0 we have <k> = 0, hence all nodes are 
isolated. Therefore the largest component has 
size NG = 1 and NG/N→0 for large N.

For p = 1 we have <k>= N-1, hence the network is 
a complete graph and all nodes belong to a single 
component. Therefore NG = N and NG/N = 1.

Let’s inspect how the size of the largest connected component 
within the network, NG , varies with <k>
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One would expect that the largest component grows gradually from NG = 1 
to NG = N if <k> increases from 0 to N-1. Right? Wrong



33(Barabasi Ch. 3.6; Erdős & Rényi, 1959 )

Subcritical 
Regime

(no giant component)

Critical 
Point

Supercritical Regime
(single giant component)

Connected 
Regime

(single giant component)



34(Barabasi Ch. 3.6; Erdős & Rényi, 1959 )

We have one giant component iff each 
node has on average more than one link.

That we need at least one link per node 
to observe a giant component is not 
unexpected. 

But it is arguably counter-intuitive that 
one link is sufficient for its emergence.

Subcritical 
Regime

(no giant component)

Critical 
Point



35(Barabasi Ch. 3.6; Erdős & Rényi, 1959 )

Subcritical 
Regime

(no giant component)

What’s the average degree <k> in the 
HW1 networks? 

● Is <k> > 1? Implying that they have a 
giant component.

Critical 
Point



36(Barabasi Ch. 3.6; Erdős & Rényi, 1959 )

What’s the average degree <k> in the 
HW1 networks? 

● Is <k> > 1? Implying that they have a 
giant component.

● Is <k> > lnN? Implying that they have a 
single giant component.

(For the world population, if the average 
individual has more than ln(7 ×109) ≈ 
22.7 acquaintances, then the global 
network must have a single component)

Connected 
Regime

(single giant component)



Most real networks are supercritical
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I.e., expected to be broken into 
numerous isolated components. 

Except for the actor network, 
with a single giant component.



Back to Six Degrees of Kevin Bacon
(Aka the “Small world” phenomenon)
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Consider a random network with average degree 
<k>. A node in this network has on average:
● How many nodes at distance one (d=1)?

39

Small world property: The distance between any two nodes in a 
network is small.

(Barabasi Ch. 3.8 )



Consider a random network with average degree 
<k>. A node in this network has on average:
● <k> nodes at distance one (d=1)
● How many nodes at distance two (d=2)?

40

Small world property: The distance between any two nodes in a 
network is small.

(Barabasi Ch. 3.8 )



Consider a random network with average degree 
<k>. A node in this network has on average:
● <k> nodes at distance one (d=1)
● <k>2 nodes at distance two (d=2)

41

Small world property: The distance between any two nodes in a 
network is small.

(Barabasi Ch. 3.8 )



Consider a random network with average degree 
<k>. A node in this network has on average:
● <k> nodes at distance one (d=1)
● <k>2 nodes at distance two (d=2)
● <k>3 nodes at distance three (d =3)

...
● <k>d nodes at distance d

42

Small world property: The distance between any two nodes in a 
network is small.

E.g., if <k> ≈ 1,000 (the estimated number of 
acquaintances an individual has), we expect 106 
individuals at d=2 and about a billion, i.e. almost 
the whole earth’s population, at d=3 from us.

(Barabasi Ch. 3.8 )



“Small” as in proportional to lnN, rather than N (or a power of N)
The dependence of the average distance 
in a random network on N and <k>:

The distances in a random network are 
orders of magnitude smaller than the 
size of the network.

(For our world social network, if N ≈ 7 ×109 
and <k> ≈ 103, we get 〈d〉≈ 3.28.)

43



44(Barabasi Ch. 3.8 )

“Small” as in proportional to lnN, rather than N (or a power of N)

Why                       ?



How many steps does it take from Jane to reach 
all N-1 people in the network? 

45(Barabasi Ch. 3.8 )

“Small” as in proportional to lnN, rather than N (or a power of N)

Why                       ?



How many steps does it take from Jane to reach 
all N-1 people in the network? 

<k> + <k>2 + <k>3 + … + <k>d = N-1
ln( <k> + <k>2 + <k>3 + … + <k>d ) = ln(N-1) 

46(Barabasi Ch. 3.8 )

“Small” as in proportional to lnN, rather than N (or a power of N)

Why                       ?



How many steps does it take from Jane to reach 
all N-1 people in the network? 

<k> + <k>2 + <k>3 + … + <k>d = N-1
ln( <k> + <k>2 + <k>3 + … + <k>d ) = ln(N-1) 

For large N, 
ln <k>d ~  lnN
d * ln<k> ~ lnN
d ~ lnN / ln<k>

47(Barabasi Ch. 3.8 )

“Small” as in proportional to lnN, rather than N (or a power of N)

Why                       ?



Six degrees: Experimental confirmation

Facebook 2011 network (721M active 
users, 68B symmetric friendship links): 
average distance 4.74 

(Backstrom et al, 2012)

Recall (Milgram, 1967) – the letter 
forwarding study: median 5.2 hops

48



Six degrees: Experimental confirmation

Facebook 2011 network (721M active 
users, 68B symmetric friendship links): 
average distance 4.74 

(Backstrom et al, 2012)

Q: If the Facebook friendship network 
were a random graph, what would be 
the average shortest path length? <d>?

49



Six degrees: Experimental confirmation

Facebook 2011 network (721M active 
users, 68B symmetric friendship links): 
average distance 4.74 

(Backstrom et al, 2012) 50

N = 721,000,000

L = 68,000,000,000

<k>=2L/N = 188.6

<d>~ln(721,000,000)/ln(188.6) = 3.892

Q: If the Facebook friendship network 
were a random graph, what would be 
the average shortest path length? <d>?



Six degrees: Experimental confirmation

Facebook 2011 network (721M active 
users, 68B symmetric friendship links): 
average distance 4.74 

(Backstrom et al, 2012) 51

N = 721,000,000

L = 68,000,000,000

<k>=2L/N = 188.6

<d>~ln(721,000,000)/ln(188.6) = 3.892

Q: If the Facebook friendship network 
were a random graph, what would be 
the average shortest path length? <d>?



Six degrees: Experimental confirmation

Facebook 2011 observed network:

d~ 4.74 

52

Random graph:

<d>~ln(721,000,000)/ln(188.6) = 3.892

We can use the random graph as a baseline model to compare against 
actually observed networks.

Here, the observed network is not as small a world as the random graph!

Q: Why is the actual distance longer?

<



Today’s Summary

53

Giant components

The random graph model

An explanation for Six Degrees of Kevin Bacon


