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Dynamics on Social Networks




Things Spread through Networks

Information: News, ideas, knowledge
Preferences: predilections, cultural taste
Physiological / psychological states: Emotions, ebesiy, yawning

Socio-cultural artifacts: Customs, values, beliefs, norms, law, institutions

Macro-Structural Questions:

How can we quantitatively describe these spreading dynamics?
Can we predict the speed and magnitude of the spreading?
What explains these spreading dynamics?



Information Diffusion: Hard to Predict!




Structural Virality of Online Diffusion

Question: Who should you target in a network to “maximize” information cascades
for viral marketing?

- 74M separate diffusion events (Twitter retweets of URLS)

- Influence of the seed node: # of nodes in the diffusion tree

- Seed node’s attributes (followers, friends, tweets) and previous success of the seed node most
predictive of average influence scores of the leaf nodes (clusters) in the regression tree

Answer: Hard to predict



Diffusion is difficult to predict

Actual Influence

Highly accurate predictions of within-

leaf average influence scores

-Regression tree model not so predictive of individual
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-Weak effect of the nature of the content

-With these “null” results, the paper pivots to asking a
slightly different question: Who should you target to
“optimize” information cascades (i.e., introduce cost
constraint)?
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Structural virality of diffusion

How do information cascades look like?

- Broadcast? %A\
- Viral diffusion?



Structural virality of diffusion

How do information cascades look like?
- Broadcast? %N
- Viral diffusion?

Structural virality (Wiener index)

- Average path length in a diffusion tree
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Structural virality of diffusion

Structural virality (Wiener index)
- Average path length in a diffusion tree

Level 0
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Recall, d ~ Ln(N) / Ln<k>
In a complete binary tree
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Structural virality of diffusion

Examples of information cascade

trees in increasing order of virality
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Figure 2 Distribution of Cascade Sizes on a Log-Log Scale,
Aggregated Across the Four Domains We Study:
Videos, News, Pictures, and Petitions
10 -
1.0 -
. 0.1
*
£ 001-
Q
(&)
0.001 -
0.0001 =
0.00001 —
T T T T T
1 10 100 1,000 10,000
Cascade size
Note. CCDF, complementary cumulative distribution function.

11



Structural virality of diffusion

Does structural virality correlate
with cascade size?

Figure 4 Size and Structural Virality Distributions on a Log-Log Scale for Cascades Containing at Least 100 Adopters,

Separated by Domain
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Structural virality of diffusion

Does structural Vira"ty correlate Figure 6  Correlation Between Cascade Size (Popularity) and
. . Structural Virality Across Four Domains
with cascade size?
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True vs. False information diffusion

False news diffuses much faster, reaches broader audience, and penetrates
more deeply
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Threshold Models of Contagion




Dynamics of Behavioral Change

Model the effect of network structure on the spread and adoption of behaviors through
network ties

Three Mechanisms of social adoption
-Common environmental influence

-Homophily (e.g., similar taste)
-Social influence

Very difficult to disentangle these mechanisms with observational data
(e.g., Framingham study of the spread of obesity)
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https://www.nejm.org/doi/full/10.1056/nejmsa066082

Threshold models of adoption

Cumulative Distribution CCD(r)

Hypothetical threshold distribution Some social behaviors require more than

A

A

single exposure for adoption

- Individuals can have different levels of
reluctance/resistance (thresholds)
CCD(r)=r
- Variance in norms, preferences, utility lead
to a distribution of thresholds

- Toy example: If an initial adoption occurs,
adoption will reach 100% (saturation)

v

Threshold (r)
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Threshold models of adoption

Hypothetical threshold distribution
4 Sensitivity of collective behavior

- A negligible change to the threshold
distribution can lead to vastly different
equilibria

CCD(r)=r

v

Threshold (r)

Cumulative Distribution CCD(r)

v
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Threshold models of adoption
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distribution
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Some social behaviors require more than
single exposure for adoption

- Assumption 1: People have perfect
information about adoption at time ¢

- Assumption 2: Individual’s threshold
pertains to population adoption, not
local adoption
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Simple Contagion

A single contact leads to contagion (e.g., virus)
Spreads quickly in networks with low CPL (e.g., small-world)

Individual with a diverse egonetwork can “infect” disproportionately
(e.qg., super spreaders)

20



Complex Contagion

Costly adoption requires social reinforcement

- Simple contagion: One infected node is / \ /
sufficient for contagion oo (@ —

Simple Contagion

- Complex contagion: More than one node Complex Contagion
required




Causal ldentification

Social contagion is an endogenous process:
- Homophily - adoption

- Embeddedness - adoption

- Tie strength - adoption

Similar people form strong ties

Embedded relations tend to be strong ties

Tie strength can potentially increase similarity
Tie strength can generate embedded relations

Result: Difficult to estimate causal effect on adoption
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Dynamics of Behavioral Change

|dentification strategy: experimental approach
- Create two separate worlds, with vs. without social influence
- Observe adoption behavior in the two worlds
- Example: The Music Lab experiment
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The Music Lab Experiment

: Music Lab — Song Selection - Mozilla Firefox
File Edit View Go Bookmarks Tools Help
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Complex Contagion: Randomized Experiment

Randomization to Conditions

Clustered lattice

Random network

Adoption/infection probability increases with
the number of neighbors who already
adopted

Builds on the ideas of thresholds and social
reinforcement

Initially studied as a simulation model
(Centola and Macy 2007)

Centola reproduced the results through real-
world experiments
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Complex Contagion: Randomized Experiment

Adoption/infection probability increases with
the number of neighbors who already
adopted

Builds on the ideas of thresholds and social
reinforcement

Initially studied as a simulation model
(Centola and Macy 2007)

Centola reproduced the results through real-
world experiments
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Complex Contagion

w

@)

2.5 25— 2.5 .
2 2 . 2 SEETEETEEEE B
£2.0— Ba0- : : | € 2.0 .
= = . = SR
S 9o S kel A
7] . 7] 1 D 4| DD T el
515 S15— @ g15 DT r (AT { :
z z . z SR -
81.0- 810 : 8 1.0 ST ¥ Ik { + | { :

0 * 0 i ¢ 0 { : { A L
To.5— Bos—- T 0.5 { SN @ -
[} [ [0 : B . 5 s
= ] o o -

o—_ 0— 0— AR

. : e NN BN
1 | r rrrrr 1T T 11
Contact Contact Contact 3)c—)@ o)y oy o©
neighborhood: neighborhood: neighborhood:
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Ugander et al. 2012

Open questions:

For a focal individual, is a closed or open triad more conducive to social
contagion? (e.g., Facebook adoption study)



Opinion Dynamics on Networks:

Why Liberals Drink Lattes




The Problem of Lifestyle Politics

Latte-drinking liberals and bird-hunting conservatives

Ly

Latte-liberal stereotype has a long history
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https://www.youtube.com/watch?v=A45-JXTZ1Ec

Attribute-Based Explanations

Political ideology is correlated with lifestyle items in the General Social Survey

|
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I/ Y { F1c. 2.—Magnitude of zero-order and partial correlation between GSS lifestyle items
. / v and ideological identity. Graphs plot Epanechnikov kernel density functions for both
/ ! zero-order (solid lines) and partial (dashed lines) correlation magnitudes estimated from
™ ! A the mixed-effects model (see table A2 in the appendix). One value is plotted for each of
- L % the 216 item pairs. Time is set to 2010 to facilitate comparison across item pairs. The
2 ! solid vertical reference line gives the mean predicted zero-order correlation magnitude
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S : for partial correlation magnitude.
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DellaPosta et al. 2015


https://www.jstor.org/stable/10.1086/681254

The Problem of Lifestyle Politics

Latte-drinking liberals and bird-hunting conservatives
Lattes and bird-hunting have no inherent relationship with political orientation

Other examples: musical taste and political orientation

- Liberals are omnivorous: positive correlation with blues, reggae, jazz, rock
- Conservatives with stronger belief in religion vs. science

Q: How did we come to form these stereotypes?
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Attribute-Based Explanations

Q: How did we come to form these stereotypes?

Attribute-based explanations:

- Education: People develop taste for certain lifestyles (e.g., classical music)

- Economic status: Certain lifestyles are costly

- Occupation: work that is complex, low supervision, and creative make people less
conforming and liberal

- Moral values: care, fairness, liberty vs. loyalty, authority, sanctity

- Psychological traits: openness to new experience and cognitive complexity vs. need
for certainty

- Physiological differences: Age, gender
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Network Autocorrelation

Problem of attribute-based explanations:

- Attribute-based explanations implicitly assume that individuals are social atoms
- Regression analysis of survey data assumes independent observations (individuals)

Before constructing elaborate explanations about lifestyle and politics, one must rule out
the simplest explanation first: network autocorrelation
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Body Mass Index (Kg/m?)

Network Autocorrelation

Autocorrelation: An observation is dependent on other observations, where this dependence
increases with proximity in temporal, spatial, and network location.

Temporal Autocorrelation Spatial Autocorrelation
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Source: De Lima et al. 2024 Source: Manual Gimond Github 34
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https://www.mdpi.com/1660-4601/21/4/502
https://mgimond.github.io/Spatial/spatial-autocorrelation.html

Network Autocorrelation

Network autocorrelation:

- People are influenced by network neighbors (e.g., peer approval)
- Herding effect when environmental uncertainty is high (i.e., follow the crowd)

Self-reinforcing dynamic of homophily and social influence explains lifestyle - politics
correlation

- Similarity strengthens a social tie (homophily)

- The strengthened social tie leads to even greater similarity (social influence)

- Initially small correlations (stochastic noise) in politics and lifestyle preferences
get amplified
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From simulations with social influence

Network Autocorrelation

Static-Dynamic

Static trait (e.g., gender, race) and

dynamic trait (e.g., political belief)

Observed Correlation
01 .23 456 .7 8.9 1

T T T T T T T T T T
0 o1 02 03 .04 05 .06 07 .08 .09 g
Expected Correlation (in the absence of social influence)

Dynamic-Dynamic

Dynamic trait (e.g., education) and

dynamic trait (e.qg., political belief)

Observed Correlation
0.1 .23 4516 .7 8.9 1

T T T T T T T T T T T
0 .01 .02 .03 .04 05 .06 .07 .08 .09 .1
Expected Correlation

DellaPosta et al. 2015
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https://www.jstor.org/stable/10.1086/681254

Lifestyle Politics Are Correlations, Not Causations

Tim Walz: A bird-hunting Democrat
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Dynamics on Social Networks
Diffusion and contagion
Threshold models of contagion

Su m mary Experimental approach
Computational simulations
Simple contagion vs. Complex
contagion

Observed correlations might
reflect network autocorrelation




