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Abstract

Higher-order network models have emerged as powerful extensions of the dyad-
centric graph representation for modeling complex social systems. However, the
combinatorial flexibility they offer necessitates a principled approach to defining
higher-order interaction, such as what constitutes “social” interaction in a group
context. Lax definitions can substantially distort the description of a domain’s
social characteristics (e.g., homophily, in-group bias), exaggerate the connectiv-
ity of the system, and potentially lead to misguided conclusions about its social
dynamics (e.g., diffusion potential). We draw upon microsociological insights to
rigorously define higher-order interactions among 38 million Twitter users across
six Anglophone countries, modeling the communication networks as simplicial 2-
complexes. We find structural effects of higher-order interactions at the dyad to
the entire network level that are otherwise untraceable in a graph representation.
At the dyad level, edges involved in triadic higher-order interactions exchange
messages more frequently than comparable edges embedded in triads comprised
of isolated one-on-one interactions. Furthermore, the topological features of these
edges are highly predictive of tie strength over and above standard social network
correlates. At the triad level, three Twitter users engaged in higher-order inter-
actions tend to express more positive and negative emotion in their tweets than
those who engage only in dyadic interactions. The relative frequency of positive
emotion words is highest when users in the triad do not engage in any exclusive
pairwise interactions. Finally, at the level of the entire network, these higher-
order interaction triads are interconnected at surprisingly high levels, suggesting
highly integrated social organization.
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1 Introduction

Social life consists of interactions at varying scales, from the isolated conversations
between intimate partners, to collaborations in teams, to coordination in population-
scale social movements. Across scales, the interacting individuals typically hold some
level of intersubjective understanding about the unfolding social context— shared
perceptions about which actors are involved, mutual expectations for predictable
behaviors under tacit norms and codified rules of interaction [1-3]. This mutual ori-
entation is fundamental to how individuals perceive and direct their actions in social
groups [4].

However, these mutual orientations are often lost in the representation and analy-
sis of communication networks constructed from large-scale digital-trace data— social
media follower dyads and repost/retweet dyads are aggregated into “communities”,
irrespective of the followed user’s relational awareness of the follower or the original
poster’s recognition of the reposter; polyadic engagements in a large virtual piazza
(e.g., a subreddit) constitutes “community” interactions when only few active users
dominate the “inter”-actions against the backdrop of a lurking majority. Viewed from
this angle, community detection on social networks is, at its core, a graph-based
approach for inferring the sets of individuals who orient their actions to one another
as collectives, solely relying on the patterns of dyadic connections without knowledge
of their actual orientations (i.e., the “ground truth”).

In short, these network studies describe the structure and dynamics of collective
social behavior within group contexts that may not necessarily reflect the individu-
als” own shared understanding and action orientation. We reconcile this gap between
conceptual foundation and empirical observation in the current study of higher-order
interactions among Twitter users by operationalizing conversation groups strictly
on the basis of the participants’ explicit mutual recognitions of other co-present
participants. As we demonstrate, this deliberate treatment reveals surprising ritual-
istic qualities in higher-order social interactions, otherwise difficult to discern in a
graph-based representation.

A social network, comprised of individuals and their social interactions, is a
powerful quantitative representation that abstracts away the specific intersubjective
understandings that individuals form through interaction in concrete social contexts.
The relentless reduction of messy social situations into graphs, from multifaceted
individuals to nodes and their complex relationships/interactions into edges, yields
remarkable descriptive and analytic utility. This concise representation has enabled
the systematic inquiry of the micro-level mechanisms that shape opportunities for
interaction [5, 6], the structure of social groups [7-9], social dynamics arising from
interdependent actors [10, 11], and the evolution of complex social systems across
diverse social domains [12-15].



However, a network, with the node and edge as its basic building blocks, cannot
adequately represent the broad spectrum of group-oriented interactions where three
or more individuals are conscious of the co-presence of one another — from physically
co-present congregants at religious rituals [2] to digitally co-present online protesters
[16] and geographically dispersed members collaborating in formal organizations [17].
In short, network representations implicitly view an interacting social group to consist
of the union of dyadic interactions, even though social life consists of mixtures of both
dyadic and such higher-order interactions. At a conceptual level, this assumption is
questionable depending on the social context. For example, some Cistercian convents
and monasteries, the archetypal fraternal social organizations, actively discourage the
formation of personal friendships to foster egalitarian bonds to the collective while dis-
couraging favoritism and factionalism that could threaten group cohesion [18]. Instead,
these religious institutions place strong focus on higher-order interactions such as
religious rituals in which co-present participants develop shared focus around sacred
symbols and a sense of unity through bodily synchrony (e.g., hymns and genuflec-
tion) [1]. In this ideal-typical group that suppresses dyadic friendships and engages its
members in elaborate higher-order interactions, it is conceptually unclear whether the
adequate graph representation is a completely connected graph (i.e., a clique), since
everyone is connected equally to one another by their “brotherly love” and shared
focus to the deity [19], or a null graph of isolated nodes as dyadic relationships are
suppressed.

Recent advances in hypergraphs and simplicial complexes offer promising exten-
sions to directly encode and model higher-order social interactions [20]. Studies have
recasted such familiar network constructs as connectivity [21] and dyadic homophily
[22, 23] to their higher-order counterparts. Likewise, dynamic higher-order interaction
models are generating fresh insights about the evolving structures [24, 25] and social
contagion dynamics [26, 27] in complex social systems.

While these higher-order interaction models have created promising opportunities
in recent years for directly representing group interactions, we still lack a sociologi-
cally informed conceptual framework for applying these tools to the “messy empirical
world” [28] in ways that align model assumptions with the crucial fact that group
interactions involve the participants’ mutual orientation to one another based on a
shared understanding of the social context. For example, the operationalizations of
higher-order interactions in empirical studies that use digital communication data
(e.g., email, threaded posts in social media) are often based on artificially delineated
conversational contexts (e.g., sender and multiple recipients in an email, threaded
conversational posts), whether each actor participates, lurks, or is simply referenced
by another participant [29]. Similarly, higher-order units constructed from physical
contact using Bluetooth or RFID sensing data [23, 25, 30, 31] are based on arbitrar-
ily determined spatio-temporal proximity, assuming that the set of individuals who
fall within these proximity thresholds all share the same focus of interaction [19, 32].
These behavioral assumptions usually give reasonable approximations of higher-order
interaction. However, Without careful, principled incorporation of the participants’
perceptions, there is the risk of overestimating the size or prevalence of higher-order



Table 1 Summary Statistics of Twitter Mention Networks

Global % of 9% of

Mean Clustering Closed Triangles Nodes in at least

Country Nodes Degree Coefficient which are Filled One Filled Triangle
New Zealand 133K 15.11 0.087 4.5% 31.6%
Singapore 419K 14.44 0.117 6.3% 40.0%
Australia 868K 15.50 0.089 5.9% 33.3%
Canada 2.21M 17.91 0.074 5.8% 42.9%
Great Britain ~ 7.65M  24.33 0.050 8.4% 51.5%
United States 26.35M 26.08 0.067 4.9% 46.8%

interaction events/groups, which could result in overestimation of the overall connec-
tivity of the social system and the scale, speed, and sensitivity of cascade dynamics
therein [27, 33]. Although some studies take rigorous data-driven approaches to delin-
eate the group boundaries from proximity data [24, 34], they usually require granular,
longitudinal mobility and location sensing data from well-behaved populations (e.g.,
university students) that already exhibit highly regular activity patterns. Hence, in
this article, we define higher-order interactions only where all involved individuals
unambiguously acknowledge the same set of participants in a conversational context.

2 Results

We use a large-scale Twitter dataset of hundreds of millions of original mention tweets
created between 2006 and 2014 by 38M user accounts from six Anglophone countries
(see Methods) [35]. Each original tweet contains an author and one or more mentioned
users. From these original mention tweets, we construct a higher-order network X C 2V
for a set of V' users within each country (see Table 1 for summary statistics).
Formally, X’ contains elements of the form x = {vy, ..., v}, which represent dyadic
and higher-order relationships between k > 2 users. A set of users z is included in X
if the following holds: For all i € {1, ..., k}, there exists a tweet by v; which mentions
all users in {vy,...,v;_1,viy1,...,0x} (and potentially more users) simultaneously
(see Fig. 1). This operationalization has the advantage of delineating the boundary
based on the users’ own expressed acknowledgments. Furthermore, because we are
interested in studying the nature of social groups where individuals all share mutual
orientations to one another, we prefer this operationalization which ensures symmetry
for each relationship, i.e. each member 4 has simultaneously addressed all k — 1 others
in the group in the same tweet. Hence, the above empirical data construction for
higher-order relationships on Twitter builds in consensus of co-presence as each group
member simultaneously acknowledges the rest of the group. Another key advantage
of representing elements of higher-order relationships in this way is that X naturally
forms a simplicial complex. Simplicial complexes are data structures where any higher-
order relationship implies the existence of all lower-order relationships (e.g., if a triadic
relationship {vg, vp,v.} € X, then {vg,vp}, {vp, ve}, {va,ve} € X as well). We will
often refer an element of X as a simplex. The definition of X above leads to this



inclusion assumption being satisfied because, for any set of users  C X, any subset
of users o C z will satisfy the requirements to be in X .

Although the data structure X can also be viewed as a hypergraph as it is a
collection of nodes in higher-order relationships [36, 37], we use the simplicial complex
representation for theoretical and methodological reasons. First, we are interested
in the implications of defining higher-order interactions rigorously on the basis of
mutual orientations. An important implication that we consider is whether there is
a difference between ties that are embedded in higher-order interaction contexts vs.
those that are not. A simplicial complex representation is more suitable for addressing
this question because its inclusion assumption sociologically implies that if a social tie
is embedded in higher-order interactions, then it cannot be considered independent
of that higher-order context. In contrast, the hypergraph representation, which does
not impose the inclusion assumption, allows the distinction between two individuals
having a tie separate of a higher-order context (i.e., edge) and a tie that is part of a
higher-order context (i.e., hyperedge). Second, from a methodological standpoint, the
simplicial complex representation allows us to leverage the powerful analytical tools
from algebraic topology for effectively delineating the macro structure of higher-order
interactions, as we present below.
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Fig. 1 Modeling higher-order relationships from co-mentioned tweets. (Left) Filled triangle: We view
a triad engaged in higher-order interaction if each and every member creates at least one tweet in
which the other two members are mentioned together. (Middle) Not a closed triangle: B and C do
not reciprocate the co-mentioned tweet from A. (Right) Closed but unfilled triangle: Users A and B
each co-mention all other members of the group, but C' only mentions A and B individually in two
separate tweets (C1 and C2). We categorize this triad consisting of three bidirected edges as a closed
triangle, but not as a filled triangle with higher-order interaction, since C' has not co-mentioned A
and B in a tweet. By this operationalization, all filled triangles are closed triangles, but not all closed
triangles are filled.

We refer to a simplex with 2 nodes as an edge and a simplex with 3 nodes as a
“filled” triangle. An “unfilled” triangle will refer to a set of three nodes vy, va, and vs
such that all three possible (bidirected) dyadic communications are present between
the nodes, but not all three of them co-mention the others. To remain consistent with
the literature on networks, we use the term “closed” triangle to refer to any set of
three nodes where all bidirected connections exist, i.e. the union of filled and unfilled
triangles. As shown in Table S1, higher-order simplices (k > 3) are present in these



Twitter mention networks (e.g., approximately 15% of the nodes are in at least one
tetrahedron, where every node co-mentions the other three nodes). However, we leave
these higher-order simplices for future study to first establish the characteristics of
mutually oriented higher-order interactions at the most elementary and fundamental
level, the triad [38—42].

Tie Strength in Filled Triangles

Encoding higher-order interactions among Twitter users in this way, we discov-
ered distinct characteristics in communication ties that would otherwise have been
unobservable in a graph-based representation. First, communication volume in filled
triangles was higher than in unfilled triangles— across all country datasets, three users
in an average filled triangle exchanged 305.7 unique mention tweets (S.E. = 0.08,
Median = 204), which is three times the average unfilled triangle that exchanged 103.8
unique mention tweets (S.E. = 0.01, Median = 58). This stark contrast in volume
at the triad level was also apparent at the dyad level in all six countries— ties that
were embedded in filled triangles exhibited higher communication volume than those
embedded in unfilled triangles (Fig. 2). Specifically, our tie-level regression model of
mention frequency showed that with every additional filled triangle in which a tie was
embedded, the number of mention tweets between them increased by 9.24, whereas
an additional unfilled triangle to a tie was associated with only 0.06 additional men-
tion tweets (Appendix, Table S2). Similarly, in relative terms, the communication
volume of a tie increased with the proportion of closed triangles that were filled, fur-
ther supporting the notion that ties incident to filled triangles have higher tie strength
(Appendix, Fig. S1). While these results are consistent with the widely observed pos-
itive correlation between the strength of social ties and their embeddedness in closed
triangles [35, 41, 43, 44], they shed new light on this taken-for-granted correlation,
suggesting that the relational strength of embedded ties may be driven primarily by
higher-order interactions that previous studies did not explicitly measure.

We also found correlational evidence that, beyond an edge’s local-level embedded-
ness in filled triangles, its structural position in the broader higher-order topological
space may substantially impact tie strength. By representing higher-order interac-
tions as simplicial complexes, we used Hodge Decomposition from algebraic topology
to quantify a given edge’s curl, gradient, and harmonic components associated with
the indicator function of each edge (see Methods). The curl component measures the
extent to which an edge is associated with filled triangles. The gradient component
measures the extent to which an edge is a part of the cut-space of the graph, i.e. the
extent to which the removal of the edge would disconnect the graph. Finally, the har-
monic component measures the extent to which an edge is associated with neither the
gradient nor the curl, which corresponds to “topological holes” in the network [45, 46],
i.e. cycles in the network that are not associated with filled triangles.

The higher-order topological position of an edge, quantified as the three Hodge
components, appear to encode unique information for predicting tie strength that is
not captured in the graph-based local (i.e., common neighbors) and global (i.e., tie
range) measures of tie distance. Table 2 reports the R? from simple OLS models for
predicting tie strength, measured as the log of mention tweet frequency between two



Average Number of One-on-One Mention Tweets
99.0 104.8 111.9 115.0 117.7 118.7 116.8 117.6 117.3

Average Number of Mention Tweets
-278.0 265.4 254.2 249.9 246.1 242.9 237.4 233.7

9

8

197.3 102.4 102.8 106.6 107.9 107.1 106.5 106.5

-100

7

167.9 178.7 179.4 176.9 177.4 176.9 173.9 175.3 171.7 172.4 84.3

6

127.3 138.5 143.4 146.6 146.4 145.8 146.8 144.8 144.7 143.3 722 77.3 79.7 81.0 . 8 B : 80

95.8 107.3 113.6 117.1 118.7 119.2 120.1 118.4 119.1 1189 61.0 655 68.1 69.4

82.4 88.7 914 935 948 953 957 955 954

4

505 537 56.0 57.6 58. ! ! ! 60

40.8 43.4 450 46.1

3

62.4 67.4 701 718 729 732 734 739 737 100

45.0 48.7 50.6 51.7 52.3 527 52.7 52.8 53.1

2

314 33.1 340 346

Forming Filled Triangles
5
Forming Filled Triangles

1

27.7 30.2 314 32.0 324 325 327 328 33.0 50 209 21.8 222 225 225

Number of Common Neighbors
Number of Common Neighbors

119 131 13.6 138 14.0 141 142 143 144 11.1 114 115 115 115

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7
Number of Common Neighbors Number of Common Neighbors
Forming Unfilled Triangles Forming Unfilled Triangles
Fig. 2 Tie strength as a function of filled and unfilled triangles incident to an edge, computed across
all edges in our combined data. The (¢, ) entry on the heatmap represents the average number of
mention tweets on an edge which has ¢ common neighbors that form filled triangles and j neighbors
that form unfilled triangles. The left table shows the total number of mention tweets while the
right table shows only the number of one-on-one mention tweets. We find that, for both volume
measures, the number of filled triangles exhibits stronger association with higher communication

volume compared to unfilled triangles.

Table 2 OLS Estimation of Logged Mention Frequency (Tie Strength). The network baseline
model regresses mentions on embeddedness (number of common neighbors) and tie range (second
shortest path length). The Hodge Decomposition model regresses the mentions on the curl,
gradient, and harmonic component values of each edge. The combined model, which combines the
network baseline and Hodge decomposition models, outperforms the first two models.

R?: R2: R2:
Country Network Baseline Hodge Components Combined
New Zealand 0.101 0.192 0.241
Singapore 0.042 0.174 0.192
Australia 0.102 0.179 0.228
Canada 0.093 0.178 0.227
Great Britain 0.105 0.202 0.248
United States 0.099 0.192 0.245

users. The model using the Hodge components as predictors outperformed the network
baseline model with the number of common neighbors and tie range as predictors.
More importantly, the addition of the Hodge components to the network baseline
model additionally explained 14% of the variance on average across the six countries
(see Appendix, Tables S3-S8 for model details).

In addition, the predicted values from the Hodge components model in Table 2
replicated the curious “U”-shape relationship between a tie’s strength and the net-
work distance it spans (i.e., “tie range”, measured as the second-shortest path length
of a tie) as reported in recent studies [35, 46, 47] (Fig. S2), All in all, these findings
demonstrate the utility of a simplicial complex representation of networks where alge-
braic topological tools can parsimoniously quantify the rich group-level information
aggregated away in graph representations.



Collective Identity and Affective Arousal

In addition to their remarkable strength in terms of communication volume, the filled
triangles also prominently exhibited ritualistic qualities of collective focus and emo-
tional arousal [1]. Comparing filled vs. unfilled triangles, we used the Linguistic Inquiry
and Word Count (LIWC) lexicon [48] to measure the extent of (a) individual vs. col-
lective focus among users in filled triangles based on the usage of first-person singular
and plural pronouns and (b) their emotional arousal based on the frequency of posi-
tive and negative affect words collectively used in their mention tweets to one another.
Aggregating across all countries, we found that the filled triangles contained 92.3%
more first-person plural pronouns and 41.4% more first-person singular pronouns than
the unfilled triangles on average, indicating a more salient focus on the collective.
Similarly, these filled triangles were emotionally more expressive than the unfilled tri-
angles, with 15.6% more positive affect words and 46.6% more negative affect words
on average.

The collective focus and emotional expressiveness were even more pronounced in
the filled triangles with more prominent higher-order interactions as in the above-
mentioned Cistercian monastery ideal-type, where dyadic friendships are discouraged
to protect group cohesion. Specifically, as illustrated in Fig. 3A, we distinguished the
filled triangles based on the number of exclusively dyadic interactions, from those with
no exclusive 1:1 mention tweets (far left) to those where all three dyads exchanged
mention tweets on a 1:1 basis (far right). As shown in the U.S. case in Fig. 3B, the use
of first-person singular pronouns were markedly lower for the filled triangles with fewer
exclusively 1:1 communication dyads while the first-person plural pronouns showed
little change. Furthermore, we also found that the use of positive (negative) affect
words (Fig. 3C) significantly increased (decreased) in the filled triangles with fewer
exclusively 1:1 communication dyads. Qualitatively similar patterns were observed in
the other Anglophone country networks (see Appendix, Fig. S3).

Higher-Order Connectivity

The unusually high communication volume of edges that are incident to multiple filled
triangles as shown in Fig. 2 conjures the image of clusters of filled triangles adjacent to
a few high-volume communication ties. Given the rarity of strong ties in these mention
networks [35], one might suspect that those clusters of filled triangles exist in relative
isolation, exhibiting low levels of inter-connectivity. To simultaneously describe the
clustering and connectivity of the filled triangles, we constructed an induced graph
from the simplicial 2-complex where each induced node corresponds to a filled triangle,
linked to another induced node if their corresponding filled triangles share a common
edge (Fig. 4). We found that filled triangles were indeed highly clustered through
shared edges as expected— the average nodal degree of the induced graphs were
consistently above six, indicating that two users in a filled triangle would likely form
multiple filled triangles with other third-party users. Furthermore, the induced nodes
themselves also exhibited high levels of clustering— two edges in a filled triangle also
had a high probability of separately forming filled triangles with another shared user.
This occurs when a focal user A who is in a filled triangle with users B and C, also
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Fig. 3 (A) Filled triangles with varying numbers of exclusively dyadic interactions. The filled triangle
on the far left (0 exclusively dyadic interactions) is akin to the impersonal “fraternal” group. The
filled triangle on the far right (3 exclusively dyadic interactions) is akin to the microfamily ideal-type.
(B) Relative frequency of first-person pronouns in the mention tweets exchanged among users in filled
triangles in the United States, conditional on the number of exclusively dyadic relationships that
exist in the filled triangles. The dashed lines (and shaded 99.999% CI) indicate the baseline frequency
of pronouns in unfilled triangles. (C) Relative frequency of LIWC affect words [48] in the mention
tweets exchanged in filled triangles of U.S. T'witter users, conditional on the number of exclusively
dyadic relationships in the filled triangles. The dashed lines (and shaded 99.999% CI) indicate the
baseline frequency of affect words in unfilled triangles.

forms two additional filled triangles with a fourth user, D, one involving B and the
other involving C (i.e., {A,B,D} and {A,C,D}). We measured this tendency as the
global clustering coefficients of the induced graphs and found them to consistently
exceed 0.5 in all six countries (Table 3).

However, these clusters of filled triangles were not isolated from one another. As
shown in Table 3, the largest components in four of the six induced graphs contained
more than 70% of the induced nodes, far exceeding their respective random induced
graph baselines that preserve the observed number of filled triangles incident to each
edge (see Materials and Methods for random baseline construction). This high connec-
tivity is also visible in Fig. 5A, which displays the three largest connected components
(approximately 30% of all induced nodes) of the Singapore induced graph. These
components are each colored in shades of red (largest), blue (second largest), and
green (third largest). We further visually distinguished the three largest bicomponents



1 \
Fig. 4 Construction of the induced graph of filled triangles. Each node in the induced graph corre-
sponds to a filled triangle from the original simplicial complex, and an edge is placed between two
nodes in the induced graph if their corresponding filled triangles share an edge in the original simpli-

cial complex. We compute the induced graph for all six datasets and analyze their global structural
properties, finding a high level of cohesion (Table 3).

Table 3 Summary Statistics of Induced Graphs (see Fig. 4). In each induced graph, a node
corresponds to a filled triangle of T'witter users in the original simplicial complex and an edge
corresponds to a user-user tie shared by two filled triangles.

Nodes in Induced Graph

(Filled Triangles in  Largest Component Largest Component Global
Country Original 2-Complex) (Observed) (Random)  Clustering Coefficient
New Zealand 170K 78.6% 5.8% (4£0.29%) 0.539
Singapore 306K 28.5% 0.7% (£0.01%) 0.502
Australia 1.05M 75.4% 28.9% (40.23%) 0.531
Canada 2.48M 61.9% 2.8% (£0.14%) 0.572
Great Britain 17.28M 81.0% 45.5% (£0.13% 0.528
United States 40.93M 73.9% — 0.581

embedded in each of the three largest components by different shades of their respec-
tive general colors (e.g., the three largest bicomponents in the largest component are
colored red, orange, and light orange respectively, while the rest in the largest compo-
nent is colored light beige). The concentrated patches of same-color, same-shade edges
reflect the high level of clustering, while their scattering in the bicomponents visually
illustrates their robust connectivity. Since the edges in the induced graph are simply
the edges connecting filled triangles in the underlying network, we used their Hodge
component values of each edge to selectively visualize the patterns of local clustering
and global connectivity of the induced graphs. Specifically, Fig. 5B—D show the subsets
of edges in Fig. 5A within the top 10th percentile of curl (panel B), gradient (panel
C), and harmonic (panel D) component values, respectively. Edges with the highest
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Fig. 5 (A) The three largest connected components of the induced graph of filled triangles in the
Singapore data. These three components are colored with shades of red, blue, and green, respectively.
Each component consists of four shades of the same color where the three darker shades indicate the
three largest bicomponents (darkest is the largest) and the lightest shade indicates the rest of the
component nodes. (B)—(D) The next three panels display the subset of edges in the induced graph
(which correspond to edges in the original simplicial complex) with the highest curl (B), gradient
(C), and harmonic (D) component values, respectively. All edges in the induced graph are embedded
ties of Twitter users who share common neighbors. The embedded ties with high harmonic values
(panel D) tend to bridge topological holes in higher-order interaction networks.

curl values in panel B highlight the largest clusters of induced nodes in the bicompo-
nents. Edges in panel C with the highest gradient values uncover the smaller clusters
interspersed between the large clusters observed in panel B. Finally, edges in panel D
with the highest harmonic values reveal the long topological bridges that span distant
regions in the bicomponents.

Taken together, the structure of the induced graphs mirrored the characteristics
widely observed in social networks [49]— high clustering, high connectivity and struc-
tural cohesion, as well as dense communities connected through long-range bridges [35].
This semblance is rather surprising, considering that these induced nodes represent
filled triangles of users with exceptionally strong ties, both in terms of communication
frequency and affect. By the logic of forbidden triads [41] and the salient ingroup vs.
outgroup distinction often observed in ritualistic groups and online discourse, the intri-
cate mix of bonding and bridging ties in the induced network seems counter-intuitive
and calls for further exploration.

3 Discussion

We applied the sociologically informed concept of rituals in operationalizing higher-
order interaction networks among Twitter users, highlighting the users’ mutual regard
and explicit acknowledgment of the other users who co-construct the context of inter-
action. By building in individual perceptions of shared context as an integral part of
the definition of higher-order interactions, our analysis revealed the unmistakable rela-
tional strength of the ties in filled triangles over those embedded in closed triangles
that network scientists have consistently observed in diverse social domains. Further-
more, this principled treatment of higher-order interactions also uncovered the filled
triangles’ stronger cognitive focus on the group and their collective emotional arousal,
both of which characterize ritualistic group interactions in general. Here, the fact that
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filled triangles with more salient group interactions use fewer (more) first-person sin-
gular (plural) pronouns and express even stronger affect lends additional support to
our ritualistic conceptualization of higher-order interactions.

For social network theory, our findings on the relational strength and emotional
arousal in higher-order interaction groups offer new approaches to clarify the concept
of the “strength” of a social tie. The intuitive notion of tie strength has served as
a useful theoretical construct that led to important insights about the structure of
large social networks during an era when those networks were practically impossible
to observe at scale. Indeed, the structural insights that this concept generated led
to numerous empirical discoveries over the past five decades, most notably on how
network structure shapes the diffusion of consequential information for significant
social and economic outcomes, such as getting a job [41, 43]. However, in more recent
debates, social network theorists have taken issue with the simplicity of this concept,
pointing out the different ways tie strength has been measured (e.g., frequency of
interaction, emotional closeness, reciprocity, and embeddedness) with examples of how
those measures can be decoupled depending on the social context, such as in low-
affect, high-transaction business relations or high-affect, low-interaction kin relations
[44, 50]. To this growing critical re-evaluation of the concept, our analysis suggests
higher-order interactions might partly resolve these inconsistencies. For example, two
nuns who frequently participate in rituals could feel emotionally close to each other
despite limited frequency of 1:1 interactions. Two scholars who collaborate on only
one paper, but with a third coauthor (i.e., a coauthorship tie in a single filled triangle)
might develop a stronger emotional bond than when their collaboration is strictly
dyadic, but the two have collaborated with the same third-party scholars on separate
publications (i.e., a coauthor tie embedded in multiple unfilled triangles) [51].

Nevertheless, our work also calls for further theoretical elaboration and rigorous
empirical validation on the assumption that higher-order interactions observed online
embody ritualistic characteristics. The theory of interaction rituals underlying our
definition of higher-order interaction assumes physical co-presence of the involved indi-
viduals [1]. This assumption raises obvious questions of applicability when applied to
digitally mediated social interactions. However, several streams of research on online
communities suggest that this scope condition could be relaxed— shared sets of sym-
bolism, such as emoticons [52] and online speech genres composed of stylistic and
syntactic conventions [17] have been shown capable of creating a sense of co-presence
and belonging in discernible online cultures. As this question of physical co-presence
is a critical point for the current study, we conducted additional analyses showing that
the filled triangles that we constructed from platform-mediated interactions share a
quantitative profile similar to the profile of the filled triangles constructed from spatio-
temporal proximity data [25] (see Supplementary Information for details). Follow-up
studies that probe this ritualistic aspect should take a more comprehensive approach
that makes thorough uses of powerful text and network analytic tools to validate other
elements in face-to-face rituals, such as temporal synchronicity (or burstiness), shared
symbolism, and relational hierarchy within filled triangles. For text, these may include
using large language models and word embeddings for exploring latent similarities in
semantics, linguistic style, and symbols that represent salient group identities. For
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networks, these may include analyzing the temporal characteristics of interactions,
such as hierarchical turn-taking using relational event models [15, 53] and the forma-
tion and synchronization dynamics in higher-order interactions [54, 55]. These future
methodological extensions focused on revealing online group rituals could lead to novel
explanations on why tie strength is so highly predictive of triadic closure [25].

Another promising direction is zooming farther out to even higher orders of interac-
tion. Although we started exploring the broader context of the filled triangles through
induced graphs, our analyses have only scratched the surface of this rather unconven-
tional construct. Building on our work, a thorough examination of the induced graph
structure could offer new insights on high-cost social contagion dynamics that require
significant social reinforcement [10], particularly through occasions where multiple
co-present neighbors collectively exert influence [27, 56, 57]. In a similar vain, another
promising extension is to contextualize the filled triangles (2-simplex) within their
higher-order simplices (e.g., filled tetrahedra). While we refrained from pursuing this
direction, prioritizing the analysis of central social network concepts (i.e., tie strength),
the natural extension is to study the maximal simplicial k-complex constructed from
the mutual acknowledgments of the actors involved.

All in all, the main contribution of this study is in aligning the operational treat-
ment of higher-order interactions with fundamental social scientific insights about how
a group is not simply the sum of its dyadic parts. Our stringent operational definition
of higher-order interaction imposes participants’ mutual orientation as a necessary
condition, thereby demonstrating compelling reasons to apply our approach to other
social domains. For example, when participants’ orientations are placed front and cen-
ter, a simplex in email exchange data, could be constructed with the condition that
each actor must send at least one email that addresses the other recipients. Simi-
larly, a k-simplex of mutually oriented academic scholars could be constructed where
the scholars each publish at least one article that concurrently cites the other schol-
ars’ publications as representing of a mutually recognized social, intellectual context.
This approach could highlight novel aspects about the “invisible college” of contem-
poraneous scholars, potentially leading to insights unattainable through the lens of
conventional network representations using citations, co-citations, and coauthorships.

4 Methods

Data Collection

The Twitter data were collected between November 2013 and October 2014 using a
snowball sampling crawler. Starting from a list of 668K seed user IDs, this distributed
crawler collected up to 3200 most recent tweets and retweets in a user’s timeline at
the time the of query. The crawler subsequently identified new user accounts to crawl
from the tweet text and metadata, queried their timelines, and repeated this process
exhaustively until no new user IDs were discovered. Th the end of this process, the
crawler collected the timelines of 157.9M user accounts globally, or roughly a third
of the total number of Twitter accounts at that time (and an even higher portion
of monthly active user accounts). Even though high coverage cannot compensate in
principle for the bias inherent in snowball samples, the crawler likely covered the
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vast majority of (inter)active Twitter users in most of the Anglophone and Western
European countries at that time. Furthermore, with up to 3200 tweets and retweets
collected per account (the average account in the dataset has approximately 2100
tweets/retweets), our data can be used to reconstruct full conversations among any
number of users to the extent that the time ranges of their timelines overlap. We stress
that a full snapshot of user-user interactions is difficult to construct at population-scale
even with the commercially available Decahose data (10% random sample of tweets
streamed in real time to paid subscribers) that have been used in large-scale research
projects. In short, the comprehensive coverage of users and their timelines makes this
rare historical dataset ideal for studying social networks and higher-order interactions
in depth and at scale. Details of the data collection process are described in [35].

The filled triangles in the current study are constructed from the same pool of
tweets used for constructing the within-country bidirected mention networks in [35].
In the current study, we parse out the tweets with two or more user mentions from this
set and use them to construct within-country filled triangles as previously described.
Table 1 presents basic characteristics of these networks.

Bots and Data Cleaning

Since the time of our data collection in 2014, the entire Twitter eco-system has seen
a steep rise in bot account activity, which warrants aggressive filtering strategies for
tweets created in more recent years. However, the dataset we used in this study is not
likely to suffer the severe bot account issues of today. Nevertheless, we took several
measures and conducted robustness checks to address the potential biases due to inad-
equate bot and non-individual account filtering. Specifically, we filtered uni-directed
mention relations between users (i.e., retained only the reciprocal mention relations)
and analyzed only those in the largest connected network component, based on the
findings at the time that bots were seldom followed or mentioned back by ordinary
Twitter users. In addition, the research team built an organizational account classifier
for the purposes of filtering out non-individual accounts, including bots [58]. The key
results were robust even after applying such filtering.

Furthermore, the construction of higher-order interaction triads (i.e., filled trian-
gles) in this study adds another layer of unintended bot filtering. This is because we
took the filtered user accounts from the previous study and retained only the subset
that engaged in three-way reciprocal co-mentions.

Hodge Decomposition

To compute the Hodge components used to estimate tie strength in Table 2 and
Tables S3-S8, we first define boundary operators which are used to define the Hodge
Decomposition. Let V' be the set of nodes in the simplicial complex, F represent the
set of edges, and T represent the set of filled triangles. Moreover, we will label each
node from 1 to |V|. To define the Hodge Decomposition for edges, we firs define two
boundary operators: By, which acts as a signed node-edge incidence matrix, and Bs,
which acts as a signed edge-triangle incidence matrix.
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Formally, the boundary operator B; € RIVIXIFl is a matrix where rows corre-
spond to nodes and columns correspond to edges. For each edge {i,;}, where i < j,
Bili,{i,j}] = +1 and Bi[j,{i,j}] = —1. All other entries of B; are equal to 0.
The boundary operator By € RIZIXIT| has a similar definition. For every triangle
{i,7,k}, where i < j < k, we set Ba[{i,j},{?,7,k}] = Ba[{J, k},{¢,7,k}] = +1 and
Byl{i, k}, {3, 4, k}] = —1. All other entries of By are similarly set to 0.

The Hodge Decomposition is defined as follows:

Definition 1 For a vector v € R'El, the Hodge Decomposition of v is a set of 3 vectors
v9,0¢, and v" such that v = v9 + v° + v". Specifically, v9 is the projection of v onto By , v°
is the projection of v onto Bo, and o™ is defined as v — v9 — v°.

For each edge e in the simplicial complex, we can then define three features: a
gradient score, a curl score, and a harmonic score, as follows:

Definition 2 For a simplicial complex X and an edge e, let d be defined as a vector which is
1 at the index corresponding to edge e and 0 otherwise. Let §7, 55, and 5? represent the Hodge
Decomposition of d.. Then, the magnitude of the gradient, curl, and harmonic components
of de are defined:

h h
12 =|ll2, Ic=llocll2, and I=][d¢]l2,

respectively, where || - ||2 represents the standard 2-norm of a vector.

In the regressions in Table 2 as well as Tables S3-S8, we use the features 19, IS,
and I" for each edge to predict tie strength of the edge e. Further, we note that
the gradient component is positively correlated with tie range (in the New Zealand
dataset, r = 0.46), and that the curl component can only be non-trivial when a tie
has a range of 2, as an edge must be incident to a filled triangle for its curl component
to be non-zero.

Random Baseline for Giant Connected Component

To confirm that the observed connectivity in Table 3 is larger than expected, we gen-
erate random induced graphs using data from the observed Twitter mention network
of each country. Given our interest in the connectivity of filled triangles through their
shared edges, our random baseline preserves the number of filled triangles with which
each edge is associated.

Specifically, we first generate a random list of filled triangles as follows: For each
edge {4, j} in the original bidirected mention network, we compute the number of closed
triangles, K ;, and filled triangles, NN; ;, that are incident to that edge (K; ; > N; ;).
Then, from the K; ; common neighbors of ¢ and j in the original graph, we randomly
sample a list of N; ; common neighbors, {k1,...,kn, ;}. We use this list to construct
a random sample of filled triangles of the form {i, 7, k;} for £ from 1 to N; ;.

We then compute the induced graph from these randomly filled triangles as
described in the main text, and measure the size of its largest connected component.
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We repeat this random procedure 200 times and report the mean and standard error
of the largest component size for each country in Table 3 (computation for U.S. is
infeasible due to its large size).

References

[11]

[12]

[13]

Collins, R.: Interaction Ritual Chains. Princeton University Press, 777 (2005)

Durkheim, E.: The Elementary Forms of the Religious Life: A Study in Religious
Sociology., pp. 456-456. Macmillan, 777 (1915)

Goffman, E.: Interaction Ritual: Essays in Face to Face Behavior. AldineTrans-
action, 77?7 (2005)

Weber, M.: Economy and society (1968 ed.). Bedminster, New York (1922)

Kossinets, G., Watts, D.J.: Origins of homophily in an evolving social network.
American journal of sociology 115(2), 405-450 (2009)

McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: Homophily in
social networks. Annual review of sociology 27(1), 415-444 (2001)

White, H.C., Boorman, S.A., Breiger, R.L.: Social structure from multiple net-
works. i. blockmodels of roles and positions. American Journal of Sociology 81(4),
730-780 (1976) https://doi.org/10.1086,/226141 https://doi.org/10.1086/226141

Moody, J.: The structure of a social science collaboration network: Disciplinary
cohesion from 1963 to 1999. American sociological review 69(2), 213-238 (2004)

Girvan, M., Newman, M.E.: Community structure in social and biological net-
works. Proceedings of the national academy of sciences 99(12), 7821-7826
(2002)

Centola, D., Macy, M.: Complex contagions and the weakness of long ties.
American journal of Sociology 113(3), 702-734 (2007)

Eckles, D., Mossel, E., Rahimian, M.A., Sen, S.: Long ties accelerate noisy
threshold-based contagions. Nature Human Behaviour, 1-8 (2024)

Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: Densification and
shrinking diameters. ACM transactions on Knowledge Discovery from Data
(TKDD) 1(1), 2 (2007)

Banks, D.L., Carley, K.M.: Models for network evolution. The Journal of Math-
ematical Sociology 21(1-2), 173-196 (1996) https://doi.org/10.1080/0022250X.
1996.9990179

16


https://doi.org/10.1086/226141
https://arxiv.org/abs/https://doi.org/10.1086/226141
https://doi.org/10.1080/0022250X.1996.9990179
https://doi.org/10.1080/0022250X.1996.9990179

[14]

[15]

[16]

[25]

Snijders, T.A.B.: The statistical evaluation of social network dynamics. Socio-
logical Methodology 31(1), 361-395 (2001) https://doi.org/10.1111/0081-1750.
00099

Butts, C.T.: A relational event framework for social action. Sociological Method-
ology 38(1), 155-200 (2008) https://doi.org/10.1111/j.1467-9531.2008.00203.x

Haperen, S., Uitermark, J., Zeeuw, A.: Mediated Interaction Rituals: A Geog-
raphy of Everyday Life and Contention in Black Lives Matter. Mobilization:
An International Quarterly 25(3), 295-313 (2020) https://doi.org/10.17813/
1086-671X-25-3-295 https://meridian.allenpress.com/mobilization/article-
pdf/25/3/295/2630042/i1086-671x-25-3-295. pdf

DiMaggio, P., Bernier, C., Heckscher, C., Mimno, D.: In: Weininger, E.B.,
Lareau, A., Lizardo, O. (eds.) Interaction Ritual Threads: Does IRC Theory
Apply Online?, pp. 81-124. Routledge, 777 (2018). https://doi.org/10.4324/
9780429464157

Sundberg, M.: ‘you can’t just stick with those you like’: Why friend-
ship practices threaten fraternal life in cistercian monasteries. Soci-
ology 53(6), 1143-1159 (2019) https://doi.org/10.1177/0038038519838693
https://doi.org/10.1177/0038038519838693

Feld, S.L.: The focused organization of social ties. American Journal of Sociology
86(5), 1015-1035 (1981). Accessed 2024-05-12

Battiston, F., Cencetti, G., Iacopini, 1., Latora, V., Lucas, M., Patania, A., Young,
J.-G., Petri, G.: Networks beyond pairwise interactions: Structure and dynamics.
Physics Reports 874, 1-92 (2020)

Patania, A., Petri, G., Vaccarino, F.: The shape of collaborations. EPJ Data
Science 6, 1-16 (2017)

Sarker, A., Northrup, N., Jadbabaie, A.: Higher-order homophily on simplicial
complexes. Proceedings of the National Academy of Sciences 121(12), 2315931121
(2024)

Veldt, N., Benson, A.R., Kleinberg, J.: Combinatorial characterizations and
impossibilities for higher-order homophily. Science Advances 9(1), 3200 (2023)

Sekara, V., Stopczynski, A., Lehmann, S.: Fundamental structures of
dynamic social networks. Proceedings of the National Academy of Sci-
ences 113(36), 9977-9982 (2016) https://doi.org/10.1073/pnas.1602803113
https://www.pnas.org/doi/pdf/10.1073 /pnas.1602803113

Benson, A.R., Abebe, R., Schaub, M.T., Jadbabaie, A., Kleinberg, J.: Simplicial
closure and higher-order link prediction. Proceedings of the National Academy of

17


https://doi.org/10.1111/0081-1750.00099
https://doi.org/10.1111/0081-1750.00099
https://doi.org/10.1111/j.1467-9531.2008.00203.x
https://doi.org/10.17813/1086-671X-25-3-295
https://doi.org/10.17813/1086-671X-25-3-295
https://arxiv.org/abs/https://meridian.allenpress.com/mobilization/article-pdf/25/3/295/2630042/i1086-671x-25-3-295.pdf
https://arxiv.org/abs/https://meridian.allenpress.com/mobilization/article-pdf/25/3/295/2630042/i1086-671x-25-3-295.pdf
https://doi.org/10.4324/9780429464157
https://doi.org/10.4324/9780429464157
https://doi.org/10.1177/0038038519838693
https://arxiv.org/abs/https://doi.org/10.1177/0038038519838693
https://doi.org/10.1073/pnas.1602803113
https://arxiv.org/abs/https://www.pnas.org/doi/pdf/10.1073/pnas.1602803113

[26]

[27]

[28]

[29]

[33]

[34]

[36]

[37]

Sciences 115(48), 11221-11230 (2018)

Tacopini, 1., Petri, G., Baronchelli, A., Barrat, A.: Group interactions modulate
critical mass dynamics in social convention. Communications Physics 5(1), 64
(2022)

Tacopini, I., Petri, G., Barrat, A., Latora, V.: Simplicial models of social contagion.
Nature communications 10(1), 2485 (2019)

Hirsch, P., Michaels, S., Friedman, R.: ”dirty hands” versus ”clean models”: Is
sociology in danger of being seduced by economics? Theory and Society 16(3),
317-336 (1987). Accessed 2024-05-12

Aktas, M.E., Nguyen, T., Jawaid, S., Riza, R., Akbas, E.: Identifying critical
higher-order interactions in complex networks. Scientific Reports 11(1), 21288
(2021) https://doi.org/10.1038/s41598-021-00017-y

Serrano, D.H., Hernandez-Serrano, J., Gémez, D.S.: Simplicial degree in complex
networks. applications of topological data analysis to network science. Chaos,
Solitons & Fractals 137, 109839 (2020)

Cencetti, G., Battiston, F., Lepri, B., Karsai, M.: Temporal properties of higher-
order interactions in social networks. Scientific Reports 11(1), 7028 (2021) https:
//doi.org/10.1038 /341598-021-86469-8

Simoski, B., Klein, M.C., Aratjo, E.F.d.M., Halteren, A.T., Woudenberg, T.J.,
Bevelander, K.E., Buijzen, M., Bal, H.: Understanding the complexities of blue-
tooth for representing real-life social networks: A methodology for inferring
and validating bluetooth-based social network graphs. Personal and Ubiquitous
Computing, 1-20 (2020)

Higham, D.J., De Kergorlay, H.-L.: Epidemics on hypergraphs: Spectral thresh-
olds for extinction. Proceedings of the Royal Society A 477(2252), 20210232
(2021)

Musciotto, F., Battiston, F., Mantegna, R.N.: Detecting informative higher-order
interactions in statistically validated hypergraphs. Communications Physics 4(1),

218 (2021) https://doi.org/10.1038 /s42005-021-00710-4

Park, P.S., Blumenstock, J.E., Macy, M.W.: The strength of long-range ties in
population-scale social networks. Science 362(6421), 1410-1413 (2018)

Torres, L., Blevins, A.S., Bassett, D., Eliassi-Rad, T.: The why, how, and when
of representations for complex systems. STAM Review 63(3), 435-485 (2021)

Ausiello, G., Laura, L.: Directed hypergraphs: Introduction and fundamental
algorithms—a survey. Theoretical Computer Science 658, 293-306 (2017)

18


https://doi.org/10.1038/s41598-021-00017-y
https://doi.org/10.1038/s41598-021-86469-8
https://doi.org/10.1038/s41598-021-86469-8
https://doi.org/10.1038/s42005-021-00710-4

[38]

[39]

[40]

[41]

[42]

[45]

[46]

[47]

[48]

[49]

[52]

Simmel, G.: The Sociology of Georg Simmel. The Free Press, 7?7 (1950)

Cartwright, D., Harary, F.: Structural balance: A generalization of heider’s theory.
Psychological Review 63(5), 277-293 (1956) https://doi.org/10.1037/h0046049

Obstfeld, D.: Social networks, the tertius iungens orientation, and involvement
in innovation. Administrative Science Quarterly 50(1), 100-130 (2005) https:
//doi.org/10.2189/asqu.2005.50.1.100

Granovetter, M.S.: The strength of weak ties. The American Journal of Sociology
78, 1360-1380 (1973)

Burt, R.: Structural Holes: The Social Structure of
Competition. Harvard University Press, 777 (1995).
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-

20&path=ASIN /0674843711

Rajkumar, K., Saint-Jacques, G., Bojinov, 1., Brynjolfsson, E., Aral, S.: A causal
test of the strength of weak ties. Science 377(6612), 1304-1310 (2022)

Brashears, M.E., Quintane, E.: The weakness of tie strength. Social Networks 55,
104-115 (2018) https://doi.org/10.1016/j.socnet.2018.05.010

Hatcher, A.: Algebraic Topology. Cambridge University Press, 777 (2002)

Sarker, A., Seby, J.-B., Benson, A.R., Jadbabaie, A.: Which bridges are weak
ties? algebraic topological insights on network structure and tie strength. arXiv
preprint arXiv:2108.02091 (2021)

Lyu, D., Yuan, Y., Wang, L., Wang, X., Pentland, A.: Investigating and modeling
the dynamics of long ties. Communications Physics 5(1), 87 (2022)

Pennebaker, J.W., Francis, M.E., Booth, R.J.: Linguistic inquiry and word count:
Liwc 2001. Mahway: Lawrence Erlbaum Associates 71(2001), 2001 (2001)

Moody, J., White, D.R.: Structural cohesion and embeddedness: A hierarchical
concept of social groups. American Sociological Review 68, 103127 (2003) https:
//doi.org/10.2307,/3088904

Lizardo, O.: Theorizing the concept of social tie using frames. Social Networks
78, 138-149 (2024) https://doi.org/10.1016/j.socnet.2024.01.001

Lawler, E., Thye, S., Yoon, J.: Emotion and Group Cohesion in Productive
Exchange. American Journal of Sociology 106(3), 616-657 (2000) https://doi.
org/10.1086,/318965

Park, J., Barash, V., Fink, C., Cha, M.: Emoticon style: Interpreting differences
in emoticons across cultures. Proceedings of the International AAAI Conference

19


https://doi.org/10.1037/h0046049
https://doi.org/10.2189/asqu.2005.50.1.100
https://doi.org/10.2189/asqu.2005.50.1.100
https://doi.org/10.1016/j.socnet.2018.05.010
https://doi.org/10.2307/3088904
https://doi.org/10.2307/3088904
https://doi.org/10.1016/j.socnet.2024.01.001
https://doi.org/10.1086/318965
https://doi.org/10.1086/318965

on Web and Social Media 7(1), 466-475 (2021) https://doi.org/10.1609/icwsm.
v7il.14437

[63] Lerner, J., Lomi, A.: Relational hyperevent models for polyadic interaction net-
works. Journal of the Royal Statistical Society Series A: Statistics in Society
186(3), 577-600 (2023) https://doi.org/10.1093/jrsssa/qnac012

[54] Tacopini, I., Karsai, M., Barrat, A.: The temporal dynamics of group interactions
in higher-order social networks. Nature Communications 15(1), 7391 (2024)

[65] Zhang, Y., Lucas, M., Battiston, F.: Higher-order interactions shape collective
dynamics differently in hypergraphs and simplicial complexes. Nature Communi-
cations 14(1), 1605 (2023) https://doi.org/10.1038/s41467-023-37190-9

[66] Arruda, G., Aleta, A., Moreno, Y.: Contagion dynamics on higher-order net-
works. Nature Reviews Physics 6(8), 468-482 (2024) https://doi.org/10.1038/
$42254-024-00733-0

[57] Lin, Z., Han, L., Feng, M., Liu, Y., Tang, M.: Higher-order non-Markovian social
contagions in simplicial complexes. Communications Physics 7(1), 175 (2024)
https://doi.org/10.1038 /s42005-024-01666-x

[68] Park, P.S., Compton, R.F., Lu, T.-C.: Network-based group account classification.
In: Agarwal, N., Xu, K., Osgood, N. (eds.) Social Computing, Behavioral-Cultural
Modeling, and Prediction, pp. 163-172. Springer, Cham (2015)

Acknowledgements. We acknowledge helpful feedback from Minsu Park. P.S.P
was supported by the U.S. National Science Foundation grants SES-1226483 and SES-
1434164. A.S. was supported by a Vannevar Bush Fellowship from the Office of the
Secretary of Defense and Army Research Office Multidisciplinary University Research
Initiative W911-NF-19-1-0217.

Supplementary information.

Quantitative Similarities between Twitter and
Physical Contact

Benson and colleagues [25] present logistic regression models that predict the type
of higher-order interaction domain (email, musician collaboration, scientific coau-
thorship, online thread participation, tag co-occurrence in online forums, class label
co-occurrence in drugs, U.S. congress bill cosponsoring, physical contact based on
proximity data) and highlight average degree and the fraction of (un)filled triangles as
two features that distinguish different domains of interaction. Among these domains,
the human physical contact domain is the setting closest to the co-present, face-to-
face interactions that form the basis of Randal Collins’ interaction ritual chain theory.
As shown in Table 1, the filled triangles in Twitter that were constructed based on
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this theory generally fall within the decision boundaries of the human physical contact
networks in terms of average node degree (i.e., d in [10', 10?]) and fraction of unfilled
triangles (i.e., f > 0.8) in Benson et al.

Example Tweets from a Filled Triangle

The following tweets are from an observed set of three de-identified users, QA @B,
and QC, who form a filled triangle in the data. For each tweet, the first line contains
the timestamp, followed by the tweet author and the second line contains the tweet
content. Twitter handles of the users have been relabeled as @A, @B, and @C for clarity
and other mentioned users who are not part of this filled triangle were labeled as @D,
etc.

Mon Aug 15 06:50:19 +0000 2011 @B
@A @C I’M. SO. PROUD. Did you love it? #Rentisamazing

Fri Sep 02 23:58:17 40000 2011 @A
@C so what time are you and @B coming? :)

Wed Sep 07 04:18:38 +0000 2011 QA
@B Hey so Reed and Blainers are gonna meet up with us for
lunch on Friday after English. @QC Wanna come? @B

Wed Sep 07 05:07:48 40000 2011 @B
@A @C YAY THIS IS GONNA BE AWESOME. EVA,
YOU SHOULD COME! !'!

Thu Sep 08 05:16:46 40000 2011 @B Omg @A and @C I FOUND THE
FLOWERS I PRESSD IN LAST YEARS CHEM! And they’re so pretty!

Mon Sep 19 10:10:30 +0000 2011 @A
WOO00000000000 T'M AN AEROPLANE! #Emilyafterchocolate
#atleastimnotaprettycloud #chemistrylastyear #randomhastags @QC @B

Fri Oct 14 08:53:12 40000 2011 @A
@QC @B Hey are you guys all good for Monday
RP party/ Disney Marathon night at Blainers?

Tue Nov 08 05:42:23 40000 2011 @B
@C @A what time is this shindig going down tomorrow?
I can hang around for a while since the parents are working late.

Tue Nov 08 20:44:02 40000 2011 @A
@B @C I’m not bringing a laptop, I have my phone if need be.
But I was planning on study. If Blaine doesn’t distract me XD

Sun Nov 20 02:45:50 40000 2011 @A

@B @C WHAT ARE YOU DOING ON TWITTER? YOU
SHOULD BOTH BE STUDYING CHEMISTRY .
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Sun Nov 20 06:07:53 +0000 2011 @A
@C @B @D So are we gonna go out for lunch
after Chem? I have $0 but will just bring my own lunch XD

Sun Nov 20 18:28:06 +0000 2011 @C
@A @B @D I might just go home and study for
Spanish like a good girl... But have fun anyway :D

Thu Dec 01 19:57:07 40000 2011 @C
@B @A We don’t wear uniform to the book returning thing, right..?

Wed Dec 14 23:18:39 +0000 2011 @A
@QC @B Both of you check your phones please! I sent you an
important message regarding Saturday :)

Mon Oct 01 01:15:22 40000 2012 @B
@C @A My house, wednesday afternoon — thursday
morning? What do we want to marathon?

Mon Oct 01 06:36:07 40000 2012 @A
@B @C WE SHOULD WATCH THE LATEST THE NEW NORMAL EP :D

Mon Oct 01 06:56:21 +0000 2012 @C
@B @A I can do that, but will hopefully vanish from 7:30—10 for ceroc.

Mon Oct 01 06:57:54 +0000 2012 @B
@C @A Okey dokey! Can you guys bring like $5 for pizza or something?

Mon Oct 01 06:59:12 40000 2012 @A
@B @QC I don’t mind :) BUT I CAN DRIVE AND GO GET THINGS AND YAY.

Mon Oct 01 07:02:16 +0000 2012 @B
@A @C We could always walk? It’s pretty
nice weather around 6ish. BUT YAY FOR DRIVING SKILLZ!

Mon Oct 01 07:02:48 +0000 2012 @A
@B @QC oh that’s true because its so freaking light now!

Mon Oct 01 07:04:09 +0000 2012 @B
@A @QC I know! Daylight savings is magical sometimes!

Mon Oct 01 07:11:03 +0000 2012 @A
@B @QC except it makes the day seem so much faster
which is annoying.

Mon Oct 01 07:11:39 +0000 2012 @B
@A @QC True, especially if you’re lazy like me and
only wake up at 11
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Proportion of Filled Triangles

Fig. S1 Tie strength versus the proportion of filled triangles among the total number of closed
triangles incident to each edge. Each dot represents an edge which is incident to 10 or more closed
triangles (the log number of closed triangles is indicated by the blue shade). Dashed lines indicate the
line of best fit for each scatter plot. In all datasets, edges with a higher proportion of filled triangles
tend to have higher tie strength, and this effect is prominent for the edges that are incident to larger
numbers of closed triangles.
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Fig. S2 Replicating the strength of long-range ties with the Hodge Decomposition. Each solid line
denotes the observed mean tie strength (with 99.999% CI) as a function of tie range (the second
shortest path length of an edge). Each dashed line represents the expected tie strength (with 99.999%
CI) from the Hodge components regression model, which replicates the observed “U”-shape (c.f. [46]).
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Fig. S3 Relative frequencies of pronouns and affect words in New Zealand (NZ), Singapore (SG),
Australia (AU), Canada (CA), Great Britain (GB), and the United States (US).

Table S1 Number of k-simplices in the Twitter Mention Networks

Dataset Nodes (k =0) Edges (k=1) Filled Triangles (k =2) Tetrahedra (k = 3)
New Zealand 133K 1.01M 170K 33K
Singapore 419K 3.03M 306K 36.7K
Australia 868K 6.73M 1.06M 280K
Canada 2.21M 19.8M 2.48M 436K
Great Britain 7.65M 93.1M 17.3M 4.46M
United States 26.35M 344M 40.9M 7.29M

Table S2 Regression results for estimating tie strength as a function of filled and unfilled
triangles incident to an edge

Dependent variable:
Number of One-on-One
Mention Tweets

Number of Neighbors Forming Filled Triangles 9.245***
(0.001)
Number of Neighbors Forming Unfilled Triangles 0.061***
(0.000)
Intercept 10.548***
(0.002)
Observations 467342694
Adjusted R? 0.094

Note: *p<0.0001; **p<le-07; ***p<le-10
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Table S3 Results for estimating tie strength (measured as log number of
mentions) in the New Zealand dataset. Gradient component is the omitted

category.
Network Baseline Hodge Components Both
Curl 1.557*** 0.264***
(0.009) (0.011)
Harmonic -0.348*** -1.285***
(0.009) (0.010)
Number of
Common Neighbors 0.016*** 0.011***
(0.000) (0.000)
Tie Range 3 -0.523*** -0.435***
(0.004) (0.004)
Tie Range 4 -0.372%** -0.524***
(0.008) (0.008)
Tie Range 5 -0.185*** -0.548***
(0.015) (0.015)
Tie Range 6plus -0.088* -0.622%**
(0.022) (0.021)
Intercept 2.014*** 2.189*** 3.028***
(0.002) (0.008) (0.009)
Observations 959775 959775 959775
Adjusted R? 0.101 0.188 0.230

Note:

*p<0.0001; **p<1e-07; ***p<le-10

Table S4 Results for estimating tie strength (measured as log number of
mentions) in the Singapore dataset. Gradient component is the omitted category.

Network Baseline Hodge Components Both

Curl 2.114*** 1.238%**
(0.007) (0.008)

Harmonic -0.370*** -1.006***
(0.006) (0.007)

Number of

Common Neighbors 0.026*** 0.014***
(0.000) (0.000)

Tie Range 3 -0.411%** -0.250***
(0.002) (0.002)

Tie Range 4 -0.281*** -0.179***
(0.003) (0.003)

Tie Range 5 -0.260*** -0.282***
(0.005) (0.005)

Tie Range 6plus -0.336*** -0.569***
(0.007) (0.007)

Intercept 2.510%** 2.667*** 3.238%**
(0.001) (0.005) (0.006)

Observations 2931886 2931886 2931886
Adjusted R? 0.042 0.157 0.169

Note:
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Table S5 Results for estimating tie strength (measured as log number of
mentions) in the Australia dataset. Gradient component is the omitted category.

Network Baseline Hodge Components Both

Curl 1.715%** 0.470***
(0.004) (0.004)

Harmonic -0.241%** -1.109***
(0.003) (0.004)

Number of

Common Neighbors 0.017*** 0.013***
(0.000) (0.000)

Tie Range 3 -0.568*** -0.404***
(0.001) (0.001)

Tie Range 4 -0.492*** -0.484***
(0.002) (0.002)

Tie Range 5 -0.333*** -0.534***
(0.004) (0.004)

Tie Range 6plus -0.211%** -0.608***
(0.006) (0.006)

Intercept 2.037*** 2.040*** 2.862***
(0.001) (0.003) (0.004)

Observations 6477159 6477159 6477159
Adjusted R? 0.102 0.176 0.220

Note: *p<0.0001; **p<le-07; ***p<le-10

Table S6 Results for estimating tie strength (measured as log number of
mentions) in the Canada dataset. Gradient component is the omitted category.

Network Baseline Hodge Components Both

Curl 1.961*** 0.686***
(0.002) (0.003)

Harmonic -0.106*** -1.009***
(0.002) (0.003)

Number of

Common Neighbors 0.027*** 0.020***
(0.000) (0.000)

Tie Range 3 -0.449*** -0.328***
(0.001) (0.001)

Tie Range 4 -0.334*** -0.302%**
(0.001) (0.001)

Tie Range 5 -0.236*** -0.344***
(0.002) (0.002)

Tie Range 6plus -0.182*** -0.483***
(0.003) (0.003)

Intercept 1.952%** 1.938*** 2.730***
(0.000) (0.002) (0.002)

Observations 19394068 19394068 19394068
Adjusted R? 0.093 0.170 0.209

Note: *p<0.0001; **p<le-07; ***p<le-10
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Table S7 Results for estimating tie strength (measured as log number
of mentions) in the Great Britain dataset. Gradient component is the

omitted category.

Network Baseline Hodge Components Both
Curl 1.588*** 0.257***
(0.008) (0.010)
Harmonic -0.396*** -1.355%**
(0.008) (0.009)
Number of
Common Neighbors 0.023*** 0.015***
(0.000) (0.000)
Tie Range 3 -0.565%** -0.346***
(0.002) (0.002)
Tie Range 4 -0.529*** -0.398***
(0.003) (0.003)
Tie Range 5 -0.466*** -0.540***
(0.006) (0.006)
Tie Range 6plus -0.428*** -0.784***
(0.012) (0.011)
Intercept 2.108*** 2.220%** 3.150***
(0.001) (0.007) (0.008)
Observations 2252308 2252308 2252308
Adjusted R? 0.105 0.194 0.232

Note:

*p<0.0001; **p<le-07; ***p<le-10

Table S8 Results for estimating tie strength (measured as log number of
mentions) in the United States dataset. Gradient component is the omitted

category.
Network Baseline Hodge Components Both
Curl 1.475%** -0.357***
(0.013) (0.015)
Harmonic -0.605*** -2.043***
(0.012) (0.014)
Number of
Common Neighbors 0.024*** 0.016***
(0.000) (0.000)
Tie Range 3 -0.443*** -0.327***
(0.003) (0.003)
Tie Range 4 -0.435*** -0.400***
(0.004) (0.004)
Tie Range 5 -0.363*** -0.522%**
(0.007) (0.007)
Tie Range 6plus -0.324*** -0.865***
(0.017) (0.016)
Intercept 2.064*** 2.528*** 3.866***
(0.001) (0.012) (0.013)
Observations 1745845 1745845 1745845
Adjusted R? 0.099 0.181 0.223
Note: *p<0.0001; **p<le-07; ***p<le-10
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